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Abstract—Weed management remains a critical challenge in
agriculture, where weeds compete with crops for essential re-
sources, leading to significant yield losses. Accurate detection
of weeds at various growth stages is crucial for effective man-
agement yet challenging for farmers, as it requires identifying
different species at multiple growth phases. This research ad-
dresses these challenges by utilizing advanced object detection
models—specifically, the Detection Transformer (DETR) with
a ResNet-50 backbone and RetinaNet with a ResNeXt-101
backbone—to identify and classify 16 weed species of economic
concern across 174 classes, spanning their 11-week growth
stages from seedling to maturity. A robust dataset comprising
203,567 images was developed, meticulously labeled by species
and growth stage. The models were rigorously trained and
evaluated, with RetinaNet demonstrating superior performance,
achieving a mean Average Precision (mAP) of 0.907 on the
training set and 0.904 on the test set, compared to DETR’s mAP
of 0.854 and 0.840, respectively. RetinaNet also outperformed
DETR in recall and inference speed of 7.28 FPS, making it more
suitable for real-time applications. Both models showed improved
accuracy as plants matured. This research provides crucial
insights for developing precise, sustainable, and automated weed
management strategies, paving the way for real-time species-
specific detection systems and advancing AI-assisted agriculture
through continued innovation in model development and early
detection accuracy.

Index Terms—Object Detection, Weed Management, DETR,
Weed Growth Classification, Weed Detection

I. INTRODUCTION

In the vast agricultural landscape of the USA, weed manage-
ment remains a critical challenge for farmers and agronomists.
The diverse climates and fertile soils ideal for crop production
also create favorable conditions for a wide variety of weed
species [1]. These unwanted plants compete with crops for
essential resources such as water, nutrients, and sunlight,
potentially leading to significant yield losses and economic

setbacks for farmers. Traditional weed control methods often
rely on broad-spectrum herbicides or mechanically or labor-
intensive removal [2]. However, these approaches can be en-
vironmentally harmful, economically inefficient, and increas-
ingly ineffective due to the development of herbicide-resistant
weed populations [3]. As such, there is a growing need for
more precise, sustainable, and automated weed management
strategies.

Recent advancements in computer vision and deep learning
have shown promise in addressing this agricultural challenge.
Object detection and classification techniques applied to weed
identification offer the potential for highly accurate, real-time
weed management solutions [4]. However, several research
gaps persist in this domain, such as (a) limited datasets: most
existing studies rely on small datasets or images captured at
specific growth stages, failing to capture the dynamic nature
of weed development, and (b) lack of diversity: many datasets
focus on a limited number of weed species, not reflecting the
full range of weeds farmers encounter in real-world scenarios.

The scope of this work addresses these gaps by focusing
on 16 weed species of greatest economic concern found
commonly across multiple geographies in USA agriculture,
tracking their growth from the seedling stage through 11 weeks
of development. We created a robust, diverse dataset and
implemented advanced object detection models to improve the
accuracy and efficiency of weed identification and classifica-
tion.

Our research makes several key contributions to the field:
• Creation of a unique dataset comprising 203,567 images,

capturing the full growth cycle of 16 of the most common
and troublesome weed species in USA agriculture.

• Meticulous labeling of the dataset, categorized by species
and growth stage (week-wise), providing a comprehen-
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Fig. 1. Soil preparation and labeling for planting weed seeds in pots inside the
greenhouse. (a) shows the prepared pots with soil and pot stakes, (b) displays
the close-up of the soil mix used for planting.

sive resource for weed identification research.
• Implementing the Detection Transformer (DETR) [5]

and RetinaNet [6], adapting these state-of-the-art object
detection architectures for weed identification.

• Comprehensive comparison of model results, culminating
in evidence-based recommendations for farmers on the
most effective model for weed detection in real-world
scenarios.

This research utilizes DETR and RetinaNet due to their
state-of-the-art performance in object detection tasks. DETR
introduces a state-of-the-art transformer-based approach, of-
fering end-to-end object detection with potential benefits in
handling complex scenes and object relationships. RetinaNet,
known for its efficiency and accuracy, employs a focal loss
function to address class imbalance issues common in de-
tection tasks. By implementing and comparing these two
advanced models, the study aims to evaluate their effectiveness
in the specific context of weed detection and classification.
This research not only contributes to the growing body of
work on AI-assisted agriculture but also provides practical
insights for farmers and beyond. By developing more accurate
and efficient weed detection systems, we pave the way for
precision agriculture techniques that can significantly reduce
herbicide use, lower production costs, and minimize environ-
mental impact.

In the following sections, this paper presents related work,
followed by a comprehensive outline of the data collection and
pre-processing techniques employed. The methodology section
describes the steps taken in this research. Subsequently, the
models section introduces the implementation and evaluation
of DETR and RetinaNet for detecting and classifying 16 weed
species at various growth stages. The results section showcases
the performance metrics of these models. In conclusion, it
summarizes these research findings for the 16 growth stage
detection and classification with actionable recommendations
for farmers based on the study’s outcomes.

II. RELATED WORK

Recent advancements in deep learning and computer vi-
sion have revolutionized weed detection and classification
in precision agriculture. Researchers have developed various

approaches to address the challenges associated with accu-
rate and efficient weed identification in diverse crop envi-
ronments. Object detection models have shown promising
results in weed identification. Hasan et al. (2024) [7] created
a dataset of 5,997 images featuring corn and four weed
species, demonstrating that YOLOv7 achieved the highest
mean average precision (mAP) of 88.50%, further improved
to 89.93% with data augmentation. Wang et al. (2024) [8]
proposed the CSCW-YOLOv7 model for weed detection in
wheat fields, achieving superior precision (97.7%), recall
(98%), and mAP (94.4%). Transfer learning has proven ef-
fective for weed species detection. Shackleton et al. (2024)
[9] evaluated seven pre-trained CNN models for rangeland
weed detection, with EfficientNetV2B1 achieving the highest
accuracy of 94.2%. Ahmad et al. (2021) [10] employed
various models for image classification and object detection
in corn and soybean systems, with VGG16 achieving 98.9%
accuracy and YOLOv3 reaching 54.3% mAP. Traditional
machine learning algorithms have also been applied to weed
detection. Islam et al. (2021) [11] compared Random Forest,
Support Vector Machine, and k-Nearest Neighbors for weed
detection in chilli pepper fields, with RF and SVM achieving
96% and 94% accuracy, respectively. Semantic segmentation
approaches have shown promise. Khan et al. (2020) [12]
introduced CED-Net, outperforming traditional models like U-
Net and SegNet. Arun et al. (2020) [13] developed a Reduced
U-Net architecture, achieving 95.34% segmentation accuracy
on the CWFID dataset. Autonomous weeding applications
have benefited from deep learning. Adhikari et al. (2019)
[14] proposed ESNet for autonomous weeding in rice fields,
utilizing semantic graphics for data annotation. Teimouri et
al. (2018) [15] developed a method to classify weeds into
nine growth stages, achieving a maximum accuracy of 78%
for Polygonum spp. Ensemble learning frameworks have been
introduced to improve detection under varied field conditions.
Asad et al. (2023) [16] proposed an approach using diverse
models in a teacher-student configuration, significantly outper-
forming single semantic segmentation models. Moldvai et al.
(2024) [17] explored weed detection using multiple features
and classifiers, achieving a 94.56% recall rate with limited
data.
Despite these advancements, several limitations persist in
existing research. These include the need for larger and
more diverse datasets [18] [19], class imbalance issues [7],
and computational complexity [16]. Most studies focus on a
limited number of weed species [17] [10] and growth stages,
which may not fully represent real-world agricultural settings.
Our research addresses these limitations by creating a compre-
hensive dataset of 203,567 images featuring 16 common and
troublesome weeds in USA agriculture, capturing their full
11-week growth cycle. We implement and adapt state-of-the-
art object detection models, DETR and RetinaNet, for weed
growth identification. Through a comprehensive comparison of
model results, we provide practical insights for weed manage-
ment in precision agriculture. This work distinguishes itself by
focusing on a large-scale, diverse dataset, considering multiple
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Fig. 2. Greenhouse environment with lighting, temperature, and watering
setup.

weed species and growth stages, and offering practical recom-
mendations for farmers on the most effective model for weed
detection in real-world scenarios. By addressing the limitations
of previous studies, our research contributes significantly to
the field of weed identification and management in precision
agriculture.

III. DATA DESCRIPTION AND PREPROCECCING

In this research, we conducted a study on 16 weed species at
the SIU Horticulture Research Center greenhouse. We began
by preparing soil for seed planting, as shown in Figure 1(b).
Potting soil (Pro-Mix ® BX) was placed into 32 square pots
(10.7 cm x 10.7 cm x 9 cm), each labeled by species with
white pot stakes. Two seeds from each species were planted
per pot. Environmental conditions in the greenhouse, including
temperature and lighting, were carefully controlled. Plants
were watered as needed and fertilized with all-purpose 20-
20-20 nutrient solution every 3 days. Figure 2 provides an
overview of the greenhouse environment. We monitored the
growth stages of each plant on a weekly basis, capturing
images from the first week until week 11. Image capture
ceased when the weeds entered their flowering stage, which
marked the final growth phase in our study. We have captured
our images by using an iPhone 15 Pro Max. Table I provides
a comprehensive overview of our study, detailing the weed
species codes, their corresponding scientific and common
names, and the number of frames captured for each species
on a weekly basis.

Among the 16 species of weeds studied, SORHA did not
emerge in weeks 1 and 2. Consequently, the research encom-
passed a total of 174 classes. The full dataset initially com-
prised 2,494,476 frames. After a thorough review process to
remove substandard images, 203,567 images were ultimately
selected for training. Figure 3 presents sample images of four
weed species at different growth stages. For ABUTH, images
from week 1 (a) and week 11 (b) are shown. Similarly, ERICA

Fig. 3. Growth stages example of four weed species. (a,b) ABUTH in week 1
and 11; (c,d) ERICA in week 1 and 11; (e,f) SETFA in week 1 and 11; (g,h)
CYPES in week 1 and 11. Images show progression from seedling emergence
to mature plants across different species.

is represented by its week 1 (c) and week 11 (d) images.
SETFA is depicted in its first week (e) and eleventh week (f)
of growth. Lastly, CYPES is illustrated in its initial (g) and
final (h) weeks of the study period. Notably, while several
species produced flowers in their final growth stages, others
did not, reflecting natural growth processes and photoperiod
sensitivities.

A. Data Preprocessing and Augmentation

Our preprocessing pipeline begins with image normaliza-
tion, a fundamental step that standardizes the input data. Each
image is meticulously scaled to a 0-1 range by dividing all
pixel values by 255.0. This normalization process is crucial
as it ensures consistency across the dataset and aligns with
the input requirements of neural networks, facilitating more
efficient and effective training [23]. Following normalization,
we perform a color space conversion, transforming the images
from the standard RGB (Red, Green, Blue) color space to the
HSV (Hue, Saturation, Value) color space. The HSV color
space allows us to more precisely isolate plant areas from the
background, enhancing the accuracy of subsequent processing
steps.

The next step in our pipeline is green area detection. We
employ carefully calibrated thresholds for the HSV channels
to create a mask that highlights potential plant regions. Specif-
ically, we use hue values ranging from 25/360 to 160/360, a
minimum saturation value of 0.20. These thresholds have been
empirically determined to effectively isolate green regions
corresponding to plant matter while minimizing false posi-
tives from non-plant green objects. We apply morphological
operations [24] to refine the green mask and improve the
continuity of detected plant areas. The refined green areas
are then subjected to connected component analysis, which
identifies and labels distinct regions within the image. This
step is crucial for differentiating individual plants or plant
clusters, allowing for more precise analysis and annotation.
Fig 4 shows the process of the data augmentation.
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TABLE I
OVERVIEW OF WEED SPECIES OF ECONOMIC CONCERN, CORRESPONDING CODES, AND WEEKLY FRAME COUNTS CAPTURED FOR EACH SPECIES

ACROSS 11 WEEKS IN THE GREENHOUSE

Species Code [20] Scientific Name [21] Common Name [22] Family Total Frames Number of frames/week
W 1 W 2 W 3 W 4 W 5 W 6 W 7 W 8 W 9 W 10 W 11

ABUTH Abutilon theophrasti Medik. Velvetleaf Malvaceae 14754 1084 2451 1212 1819 1414 981 677 1164 1084 1500 1368
AMAPA Amaranthus palmeri S. Watson. Palmer Amaranth Amaranthaceae 17525 1441 1408 2110 2014 2441 1290 923 1478 1393 1667 1360
AMARE Amaranthus retroflexus L. Redroot Pigweed Amaranthaceae 15380 1017 1363 2110 1923 1884 1150 736 1237 1082 1596 1282
AMATU Amaranthus tuberculatus (Moq.) Sauer. Water Hemp Amaranthaceae 14852 1325 1459 1565 1664 1942 837 730 969 1638 1573 1150
AMBEL Ambrosia artemisiifolia L. Common Ragweed Asteraceae 17427 1022 2215 1846 1739 2162 1093 1066 1432 1092 2045 1715
CHEAL Chenopodium album L. Common Lambsquarter Chenopodiaceae 8015 1108 954 1416 661 1056 305 418 641 453 429 574
CYPES Cyperus esculentus L. Yellow Nutsedge Cyperaceae 14275 909 1512 1032 1499 2273 978 1224 1391 1182 1170 1105
DIGSA Digitaria sanguinalis (L.) Scop. Large Crabgrass Poaceae 16962 732 1312 2411 2596 1649 1335 1166 1261 1120 1628 1692
ECHCG Echinochloa crus-galli (L.) P. Beauv. Barnyard Grass Poaceae 16564 1349 2067 2029 1426 2221 1240 929 1280 1371 1332 1320
ERICA Erigeron canadensis L. Horse Weed Asteraceae 15134 930 2183 1691 1542 2715 1189 609 742 915 1217 1401
PANDI Panicum dichotomiflorum Michx. Full Panicum Poaceae 15182 1198 1400 2143 1296 1979 952 887 1350 1425 1034 1518
SETFA Setaria faberi Herrm. Gaint Foxtail Poaceae 14635 1614 1195 2083 1348 1944 1091 715 1466 843 1342 994
SETPU Setaria pumila (Poir.) Roem. Yellow Foxtail Poaceae 15211 887 1390 1732 1654 2040 1093 747 1361 1325 1348 1634
SIDSP Sida spinosa L. Princkly Sida Malvaceae 14452 1035 1782 1583 1259 2142 1373 804 1059 1186 1303 926

SORHA Sorghum halepense (L.) Pers. Johnson Grass Poaceae 10958 0 0 1444 1268 1395 945 749 1215 1328 1116 1498
SORVU Sorghum bicolor (L.) Moench. Shatter Cane Poaceae 9573 945 1340 1959 832 1065 525 279 748 714 592 574

Fig. 4. Data Augmentation process with original image, masked image, and
bounding box, respectively, for ERICA (a,b,c) and AMAPA (d,e,f).

B. Data Labeling

Our labeling process creates comprehensive annotations
for detected plants, including bounding box coordinates and
detailed Pascal VOC XML annotations. We use Python li-
braries like Pillow [25], NumPy, and scikit-image for image
processing. To ensure accuracy, we implemented a rigorous
quality control process, manually refining annotations using
LabelImg software [26] when necessary. Our labeling conven-
tion includes both species code and week number, enhanc-
ing the dataset’s utility for tracking plant development and
species-specific analysis. This meticulous approach results in
a high-quality dataset with precise annotations and consistent
formatting, suitable for various plant analysis tasks and growth
stage tracking.

Figure 5 illustrates this process, presenting a side-by-side
comparison of an original image and its corresponding labeled
version, which we refer to as the ground truth.

IV. METHODOLOGY

After annotating the dataset, we split the dataset into
training, validation, and test sets. We used 184,719 images
(∼80%) to train our object detection models and 23,090
images (∼10%) to validate the model during training time.
The rest of the 23,090 images (∼10%) are held out to test

Fig. 5. Illustration of the labeling process for weed detection. The original
image (a) shows the weed plant, followed by the selected leaf area (b),
highlighted in blue, and the final image (c) with a bounding box and label
(AMBEL week 8).

the trained model’s performance. In this study, we employed
two advanced deep-learning models for weed detection and
classification: RetinaNet with a ResNeXt-101 backbone and
Detection Transformer (DETR) with a ResNet-50 backbone.
These models were tasked with classifying weed species and
their respective growth stages (in weeks), while simultaneously
localizing them within the images via bounding box predic-
tions. We configured and trained these models using PyTorch
and mmDetection on an NVIDIA RTX 3090 GPU.

A. Detection Transformer with ResNet-50

The Detection Transformer (DETR) model is an end-to-
end object detection architecture that combines a convolutional
backbone with a transformer encoder-decoder [27]. This ap-
proach effectively addresses the complexities of identifying
weeds in agricultural images. The backbone of our model
ResNet-50 is a convolutional neural network, pre-trained
on ImageNet (open-mmlab://resnet50). This 50-layer
network, organized into four stages, serves as a powerful
feature extractor. We utilize the output from the final stage
(out indices=(3,)) and freeze the initial stages during training
to preserve pre-learned features. The backbone’s output can
be represented as:

Fresnet = ResNet50(I) (1)

where I is the input image. A Channel Mapper follows the
backbone, transforming ResNet-50’s 2048-channel output into
a 256-channel feature map suitable for the transformer. This
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dimensionality reduction is achieved through a 1x1 convolu-
tion:

Fneck = Conv1x1(Fresnet) (2)

The core of our DETR model is the transformer module,
comprising a 6-layer encoder and decoder. Each encoder layer
incorporates a self-attention mechanism with 8 heads, followed
by a feed-forward network (FFN) with ReLU activation. The
model’s bounding box head processes the decoder’s output to
predict class labels and bounding boxes. We employ cross-
entropy loss for classification and a combination of L1 and
Generalized IoU losses for bounding box regression. The
overall loss function [28] is defined as:

L = α · Lcls + β · Lbbox + γ · Liou (3)

where α, β, and γ are weight coefficients. Lcls represents
the classification loss, which in this case is the cross-entropy
loss. Lbbox represents the bounding box regression loss, which
is a combination of L1 loss and Generalized IoU loss, and
Liou represents the IoU loss, which is specifically aimed at
improving the localization accuracy by penalizing the model
based on the intersection over union between the predicted
and ground truth bounding boxes. During training, we utilize
the Hungarian algorithm [29] for bipartite matching, ensuring
a one-to-one correspondence between predicted and ground-
truth boxes. This approach optimizes the model’s ability to
accurately locate and classify weeds within agricultural im-
ages. By integrating the robust feature extraction capabilities
of ResNet-50 with the DETR architecture’s powerful attention
mechanisms, our model achieves good performance in weed
detection with 174 classes.

B. RetinaNet with ResNeXt-101

RetinaNet is a single-stage object detection model designed
to address the extreme foreground-background class imbalance
encountered during training [30]. The architecture comprises
three main components: a backbone network for feature
extraction, a neck (FPN) for generating multi-scale feature
maps, and a detection head for predicting bounding boxes and
class probabilities. We utilized ResNeXt-101 as the backbone,
a variant of the ResNet architecture that employs grouped
convolutions for improved efficiency and performance. The
ResNeXt-101 backbone consists of 101 layers organized into
four stages, with 32 groups and a base width of 4 channels
per group. We initialized the backbone with weights pretrained
on ImageNet (open-mmlab://resnext101_32x4d) to
leverage transfer learning. Batch normalization is applied after
each convolutional layer to stabilize the learning process.

The Feature Pyramid Network (FPN) enhances the back-
bone’s feature maps by combining high-level semantic features
with low-level detailed features, enabling the detection of
objects at various scales. The FPN generates multiple feature
maps of different resolutions, which are then fed into the
detection head. The detection head of RetinaNet comprises
two subnetworks: a classification subnetwork for predicting
object presence probabilities and a regression subnetwork
for predicting bounding box coordinates. Each subnetwork

consists of four convolutional layers, followed by a final
convolutional layer that produces the desired outputs. To
handle class imbalance, we employed the focal loss function
[31] for training the classification subnetwork:

FL(pt) = −αt(1− pt)
γ log(pt) (4)

where pt is the predicted probability, αt is a balancing
factor, and γ is the focusing parameter.

We trained our model using an epoch-based training loop
with the AdamW optimizer (learning rate lr = 0.0001, weight
decay wd = 0.0001). The learning rate schedule incorporated
a linear warmup over the first 1000 iterations. We trained
for 12 epochs with a batch size of 16, employing automatic
learning rate scaling to accommodate potential batch size
changes.

C. Evaluation Metrics

To assess the performance of our weed detection models, we
employ a comprehensive set of metrics that capture both the
accuracy and robustness of the detections. Our primary metrics
are Average Precision (AP), Average Recall (AR), and Mean
Average Precision (mAP) evaluated across various Intersection
over Union (IoU) thresholds.

AP provides a single-value summary of the precision-recall
curve, effectively balancing the trade-off between precision
and recall. Precision (P) is defined as the ratio of true positive
detections to the sum of true positive and false positive
detections: P = TP

TP+FP and Recall (R) is the ratio of
true positive detections to the sum of true positive and false
negative detections: (R) = TP

TP+FN .
In this research, a true positive is a detected bounding box

that correctly identifies a weed species and has an IoU above a
specified threshold (e.g., 0.50) with the ground truth bounding
box. A false positive is a detection that either does not
sufficiently overlap with any ground truth box or incorrectly
identifies the weed species. A false negative occurs when a
ground truth weed instance is not detected by the model. AP
[32] is calculated by integrating the precision over the recall
range and it can be defined as:

AP =

∫ 1

0

P (R) dR (5)

AR [33] measures the model’s ability to detect all relevant
objects. It is computed as the average of maximum recalls at
specified IoU thresholds:

AR =
1

N

N∑
i=1

Rmax(IoUi) (6)

mAP is the mean of AP values across different classes and
is a common metric for evaluating object detection models.
It provides a balanced measure of precision and recall across
various IoU thresholds. It can be defined as:

mAP =
1

C

C∑
c=1

APc (7)

where APc is the Average Precision for class c, and C
is the total number of classes. We evaluate these metrics at
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various IoU thresholds. This multi-faceted evaluation approach
allows us to comprehensively analyze our models’ capabilities
in detecting and classifying weeds across various scenarios,
providing insights into their precision, recall, and overall
detection performance.

V. EXPERIMENTAL EVALUATION

The evaluation encompasses both training and test datasets,
with a detailed analysis across 16 weed species. We employ
various metrics, including AP, AR at different IoU thresholds
and detection limits, as well as mAP and mean average recall
(mAR). Additionally, we compare the inference speed of both
models to provide a holistic view of their capabilities.

Table II compares DETR and RetinaNet performance on
training and test sets, highlighting key metrics. RetinaNet con-
sistently outperforms DETR across all presented metrics. In
terms of mean Average Precision (mAP), RetinaNet achieves
superior scores of 0.907 and 0.904 on training and test sets
respectively, compared to DETR’s 0.854 and 0.840. This trend
continues in mean Average Recall (mAR), where RetinaNet
approaches near-perfect scores with 0.997 (training) and 0.989
(test), while DETR achieves 0.941 and 0.936. Notably, Reti-
naNet’s inference speed is significantly faster, operating at
7.28 Frames Per Second (FPS), more than twice the speed of
DETR’s 3.49 FPS. This substantial difference in processing
speed, combined with RetinaNet’s superior accuracy metrics,
suggests it may be the more efficient choice for real-time or
high-volume weed detection tasks.

Table III delves deeper, breaking down performance across
all individual weed species. This table shows the average value
of all 11 weeks results for 16 species. This view reveals
nuances in each model’s capabilities. RetinaNet demonstrates
more consistent performance across species, with less variation
in mAP scores. In contrast, DETR’s performance fluctuates
more widely, excelling with some species like AMBEL (mAP
0.817) and SIDSP (mAP 0.771), while struggling with others
such as CHEAL (mAP 0.503) and SORHA (mAP 0.527).
RetinaNet shines particularly bright with species like AMATA
(mAP 0.832) and AMAPA (mAP 0.877), though it faces
challenges with ECHCG (mAP 0.566). Across all species,
RetinaNet consistently achieves higher recall, often nearing
or reaching 1.0, while DETR’s recall, though generally high,
shows more variability. Both models exhibit the expected
decline in mAP as the IoU threshold increases from 0.5 to
0.75, but RetinaNet maintains higher scores more consistently
throughout this range.

We have selected four species for presenting their growth-
wise experimental evaluation in this paper: Palmer amaranth
(AMAPA), waterhemp (AMATA), giant foxtail (SETFA), and
velvetleaf (ABUTH). These species are considered “driver
weeds” or weeds that drive management decisions in USA
agriculture due to their aggressive growth habits, herbicide
resistance, and significant impact on crop yields [34]. AMAPA
and AMATA are particularly notorious for their rapid growth
and resistance to multiple herbicide modes of action, making

Fig. 6. Comparison of object detection results for ABUTH and DIGSA
using DETR and RetinaNet models. Row 1 displays predictions for ABUTH,
and Row 2 displays predictions for DIGSA, with ground truth and model
confidence scores indicated for each detection.

them difficult to control and highly competitive with crops.

Tables IV, V, VI, and VII present comprehensive per-
formance comparisons between DETR and RetinaNet across
four weed species (SETFA, AMAPA, ABUTH, and AMATA)
over 11 weeks. Both models demonstrated high performance
across various metrics, including mAP, mAP 50, mAP 75,
and Recall. RetinaNet generally outperformed DETR, showing
more consistent and often higher scores across most species
and weeks. For instance, RetinaNet achieved peak mAP scores
of 0.843 for SETFA, 0.902 for AMAPA, 0.924 for ABUTH,
and 0.968 for AMATA. DETR’s highest mAP scores were
comparable, reaching 0.859 for SETFA, 0.912 for AMAPA,
0.924 for ABUTH, and 0.905 for AMATA. Both models
frequently achieved perfect scores of 1.000 in mAP 50 and
Recall metrics across various weeks and species, indicating
excellent detection accuracy at lower IoU thresholds and high
object detection rates.
However, both models exhibited some performance fluctua-
tions, particularly in the early weeks. DETR often struggled
more in the initial weeks, with notably low mAP scores such
as 0.355 for SETFA in Week 1, 0.096 for AMAPA in Week
1, and 0.001 for AMATA in Week 1. RetinaNet generally
showed more stability, with its lowest mAP scores being
higher than DETR’s in most cases. For example, RetinaNet’s
lowest mAP for SETFA was 0.555 in Week 4, for AMAPA it
was 0.481 in Week 1, and for AMATA it was 0.529 in Week
2. These early-week challenges could be attributed to factors
such as less robust feature extraction, difficulty in detecting
small objects, or lower-quality images in the initial stages
of plant growth. Despite these early challenges, both models
demonstrated significant improvement over time, with peak
performances often occurring in later weeks (Weeks 8-11).
This trend suggests that as plants matured and image quality
potentially improved, both DETR and RetinaNet were able to
more accurately detect and classify the weed species.

Figure 6 shows the prediction result of DETR and RetinaNet
model. The top row focuses on ABUTH, where the first image
(a) shows the original plant without any annotations, followed
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TABLE II
PERFORMANCE COMPARISON OF DETR AND RETINANET ON TRAINING AND TEST SETS

Model mAP mAR FPSTrain Test Train Test
DETR 0.854 0.840 0.941 0.936 3.49
RetinaNet 0.907 0.904 0.997 0.989 7.28

TABLE III
PERFORMANCE COMPARISON OF DETR AND RETINANET ACROSS WEED SPECIES

Species Code DETR RetinaNet
Average mAP Average mAP 50 Average mAP 75 Average Recall Average mAP Average mAP 50 Average mAP 75 Average Recall

ABUTH 0.683 0.907 0.719 0.973 0.720 0.924 0.779 0.993
AMAPA 0.617 0.835 0.672 0.975 0.877 0.985 0.939 0.994
AMARE 0.575 0.807 0.598 0.957 0.617 0.941 0.684 0.987
AMATA 0.536 0.721 0.565 0.869 0.832 0.977 0.905 0.997
AMBEL 0.817 0.978 0.898 0.993 0.663 0.926 0.740 0.994
CHEAL 0.503 0.846 0.502 0.962 0.871 0.993 0.957 0.997
CYPES 0.643 0.861 0.680 0.986 0.781 0.971 0.853 0.995
DIGSA 0.578 0.864 0.594 0.995 0.664 0.878 0.753 0.976
ECHCG 0.655 0.899 0.715 0.986 0.566 0.814 0.612 0.950
ERICA 0.718 0.918 0.752 0.977 0.678 0.918 0.749 0.992
PANDI 0.670 0.929 0.723 0.979 0.724 0.934 0.799 0.993
SETFA 0.680 0.903 0.756 0.990 0.785 0.967 0.854 0.993
SETPU 0.597 0.852 0.652 0.973 0.794 0.949 0.858 0.993
SIDSP 0.771 0.980 0.826 0.993 0.739 0.954 0.832 0.991
SORVU 0.582 0.791 0.624 0.871 0.713 0.925 0.789 0.995
SORHA 0.527 0.715 0.544 0.892 0.693 0.858 0.780 0.894

TABLE IV
PERFORMANCE COMPARISON OF DETR AND RETINANET FOR SETFA

Class Name DETR RetinaNet
mAP mAP 50 mAP 75 Recall mAP mAP 50 mAP 75 Recall

SETFA Week 1 0.355 0.605 0.348 0.986 0.671 0.870 0.767 0.980
SETFA Week 2 0.400 0.763 0.414 1.000 0.623 0.801 0.738 0.989
SETFA Week 3 0.740 0.999 0.887 0.929 0.755 0.991 0.830 1.000
SETFA Week 4 0.607 0.860 0.717 0.974 0.555 0.764 0.611 1.000
SETFA Week 5 0.741 0.964 0.868 1.000 0.657 0.899 0.708 0.995
SETFA Week 6 0.658 0.859 0.669 1.000 0.648 0.936 0.682 1.000
SETFA Week 7 0.825 0.974 0.860 1.000 0.822 0.980 0.795 1.000
SETFA Week 8 0.743 1.000 0.818 1.000 0.822 1.000 0.943 1.000
SETFA Week 9 0.856 0.955 0.949 1.000 0.843 0.983 0.932 1.000
SETFA Week 10 0.696 0.956 0.802 0.986 0.643 0.956 0.738 0.986
SETFA Week 11 0.859 1.000 0.988 1.000 0.808 1.000 0.938 1.000

TABLE V
PERFORMANCE COMPARISON OF DETR AND RETINANET FOR AMAPA

Class Name DETR RetinaNet
mAP mAP 50 mAP 75 Recall mAP mAP 50 mAP 75 Recall

AMAPA Week 1 0.096 0.345 0.035 1.000 0.481 0.729 0.585 0.949
AMAPA Week 2 0.277 0.518 0.263 1.000 0.771 0.974 0.808 1.000
AMAPA Week 3 0.354 0.718 0.354 0.925 0.636 0.933 0.657 0.995
AMAPA Week 4 0.505 0.860 0.501 0.837 0.860 1.000 0.988 1.000
AMAPA Week 5 0.576 0.855 0.670 0.983 0.711 0.887 0.735 1.000
AMAPA Week 6 0.839 1.000 0.930 0.991 0.860 0.986 0.917 1.000
AMAPA Week 7 0.809 0.982 0.912 0.996 0.896 0.980 0.974 0.989
AMAPA Week 8 0.766 0.985 0.882 1.000 0.835 1.000 0.955 1.000
AMAPA Week 9 0.796 0.934 0.865 1.000 0.836 0.945 0.865 0.994
AMAPA Week 10 0.852 0.986 0.981 1.000 0.846 1.000 0.962 1.000
AMAPA Week 11 0.912 1.000 1.000 1.000 0.902 1.000 1.000 1.000

TABLE VI
PERFORMANCE COMPARISON OF DETR AND RETINANET FOR ABUTH

Class Name DETR RetinaNet
mAP mAP 50 mAP 75 Recall mAP mAP 50 mAP 75 Recall

ABUTH Week 1 0.418 0.723 0.471 0.994 0.605 0.899 0.689 1.000
ABUTH Week 2 0.576 0.988 0.530 1.000 0.829 0.990 0.952 1.000
ABUTH Week 3 0.356 0.697 0.346 1.000 0.790 0.996 0.899 1.000
ABUTH Week 4 0.408 0.771 0.396 0.996 0.725 0.973 0.844 0.995
ABUTH Week 5 0.445 0.923 0.377 0.871 0.730 0.974 0.789 1.000
ABUTH Week 6 0.850 1.000 1.000 0.886 0.924 0.970 0.970 0.972
ABUTH Week 7 0.885 0.932 0.931 0.993 0.966 1.000 1.000 1.000
ABUTH Week 8 0.856 1.000 0.982 1.000 0.911 1.000 1.000 1.000
ABUTH Week 9 0.912 0.977 0.949 0.975 0.876 0.978 0.920 1.000
ABUTH Week 10 0.880 0.967 0.923 1.000 0.868 0.971 0.893 1.000
ABUTH Week 11 0.924 1.000 1.000 0.989 0.924 1.000 1.000 1.000

TABLE VII
PERFORMANCE COMPARISON OF DETR AND RETINANET FOR AMATA

Class Name DETR RetinaNet
mAP mAP 50 mAP 75 Recall mAP mAP 50 mAP 75 Recall

AMATA Week 1 0.001 0.003 0.000 0.982 0.641 0.981 0.742 0.992
AMATA Week 2 0.004 0.021 0.000 1.000 0.529 0.923 0.525 0.966
AMATA Week 3 0.157 0.397 0.076 0.391 0.747 0.998 0.934 1.000
AMATA Week 4 0.484 0.910 0.486 0.397 0.763 0.985 0.838 1.000
AMATA Week 5 0.544 0.974 0.541 0.839 0.738 0.961 0.822 0.994
AMATA Week 6 0.763 0.960 0.878 0.970 0.923 0.994 0.972 1.000
AMATA Week 7 0.905 1.000 0.977 0.995 0.968 1.000 0.974 1.000
AMATA Week 8 0.756 0.913 0.808 1.000 0.889 0.979 0.954 0.990
AMATA Week 9 0.881 0.960 0.952 1.000 0.926 0.990 0.972 1.000
AMATA Week 10 0.520 0.797 0.529 0.989 0.625 0.927 0.670 1.000
AMATA Week 11 0.882 0.993 0.965 1.000 0.849 0.998 0.933 1.000

by the (b) ground truth with a labeled bounding box indicating
”ABUTH week 2.” The subsequent images display predictions
by (c) DETR and (d) RetinaNet models, each bounding
box labeled with the species name, the corresponding week,
and the model’s confidence score, with RetinaNet showing a
slightly higher score (98.6) compared to DETR (94.9). The
bottom row repeats this structure for DIGSA, showing the (e)
original image, (f) the ground truth (”DIGSA week 5”), and the
predictions from (g) DETR and (h) RetinaNet. For DIGSA, the
confidence scores are close, with DETR predicting 90.1 and
RetinaNet predicting 93.9, both models accurately detecting
the plant but with varying degrees of confidence.

VI. CONCLUSION

This research marks a pivotal advancement in precision
agriculture by demonstrating the effectiveness of AI models,
particularly RetinaNet, in weed detection and classification
across various growth stages and species. Our study, conducted
on a comprehensive dataset of 203,567 images spanning 16
weed species over 11 weeks, reveals RetinaNet’s superior
performance with mAP scores of 0.907 and 0.904 on training
and test sets, and an inference speed of 7.28 FPS, significantly
outpacing DETR’s 0.854 and 0.840 mAP scores and 3.49
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FPS speed. Both models exhibit improved accuracy with plant
maturation, yet challenges persist during the early growth
stages (weeks 1-2) due to poor differentiation between emerg-
ing plants and soil. These findings underscore the practical
implications for weed management, with RetinaNet recom-
mended for real-time applications due to its accuracy and
speed. To integrate these models into existing agricultural
practices, farmers should implement mobile-based applications
for in-field weed detection using RetinaNet, calibrate the
model for specific weed species with their growth stages
prevalent in their region, and combine AI-driven detection with
GPS-guided precision spraying systems. Despite the controlled
greenhouse setting and early-stage detection challenges, this
study lays the groundwork for future research aimed at enhanc-
ing detection accuracy through custom transformer models and
expanding the dataset to include real field conditions. These
AI-driven innovations hold the promise of revolutionizing
weed management by enabling species-specific, growth-stage-
aware detection, potentially reducing herbicide use, cutting
costs, and minimizing environmental impact. By following
these integration guidelines, farmers can leverage AI models
to optimize their weed management strategies, leading to more
sustainable and efficient agricultural practices.
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