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Abstract: The rapid growth of the cannabis industry necessitates accurate and efficient methods
for detecting and classifying cannabis seed varieties, which is crucial for quality control, regulatory
compliance, and genetic research. This study presents a deep learning approach to automate the
detection and classification of 17 different cannabis seed varieties, addressing the limitations of
manual inspection processes. Leveraging a unique dataset of 3319 high-resolution seed images, we
employ self-supervised bounding box annotation using the Grounding DINO model. Our research
evaluates two prominent object detection models, Faster R-CNN and RetinaNet, with different
backbone architectures (ResNet50, ResNet101, and ResNeXt101). Extensive experiments reveal that
RetinaNet with a ResNet101 backbone achieves the highest strict mean average precision (mAP) of
0.9458 at IoU 0.5–0.95. At the same time, Faster R-CNN with ResNet50 excels at the relaxed 0.5 IoU
threshold (0.9428 mAP) and maintains superior recall. Notably, the ResNeXt101 backbone, despite
its complexity, shows slightly lower performance across most metrics than ResNet architectures. In
terms of inference speed, the Faster R-CNN with a ResNeXt101 backbone demonstrates the fastest
processing at 17.5 frames per second. This comprehensive evaluation, including performance-speed
trade-offs and per-class detection analysis, highlights the potential of deep learning for automating
cannabis seed analysis. Our findings address challenges in seed purity, consistency, and regulatory
adherence within the cannabis agricultural domain, paving the way for improved productivity and
quality control in the industry.
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1. Introduction

Cannabis, a widely cultivated and consumed plant, has garnered significant attention
in recent years due to its medicinal and recreational properties. With the increasing
legalization and commercialization of cannabis products, there is a growing need for
efficient and accurate methods to detect and classify cannabis seeds [1]. Traditional manual
sorting and classification processes are labor-intensive, time-consuming, and prone to
human error. In response to these challenges, deep learning, a subset of artificial intelligence,
has emerged as a promising solution. Integrating advanced technologies, such as deep
learning and computer vision, in this sector is paramount. In the context of seed detection
and classification, particularly for cannabis seeds, these technologies offer significant
benefits. Automating manual processes can enhance productivity and quality control,
ultimately improving efficiency in tasks such as seed sorting and quality testing. The
detection of cannabis seeds can significantly reduce the labor and time required for seed
identification, benefiting farmers and researchers alike. It allows for the precise classification
of seeds, helping farmers identify the specific variety of cannabis they are dealing with.
Cannabis seed detection holds particular significance compared to other seed detection
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processes due to the unique characteristics and legal considerations surrounding cannabis
cultivation. Unlike many other crops, cannabis varieties vary significantly in their chemical
composition, particularly in the concentration of psychoactive compounds such as THC.
As a result, the accurate identification of cannabis seeds is crucial for regulatory compliance
and ensuring that seeds are cultivated within legal limits.

The growing popularity of cannabis for both medicinal and recreational purposes has
led to increased demand for accurate seed detection methods to maintain product quality
and consistency. Many studies have tried to define Cannabis sativa L. based on its appearance
and chemical properties. The accepted taxonomy identifies two subspecies—sativa and
indica. Each subspecies has two main varieties—cultivated and wild. The most important
varieties for medicine are C. sativa ssp. sativa var. sativa (known as C. sativa) and C. sativa
ssp. indica var. indica (known as C. indica). There is also a third, less common variety called
C. sativa ssp. sativa var. spontanea, known as C. ruderalis. C. indica is usually grown for
recreational purposes, while C. sativa is increasingly recognized for its potential medical
applications [2]. These distinctions are crucial in understanding the diverse applications
of cannabis. Industrial hemp and marijuana are distinct subtypes of the Cannabis sativa
species, primarily differentiated by their use, chemistry, and cultivation methods. Industrial
hemp is mainly based on the quantity of THC, the psychoactive component present in the
plant. While 1% THC is usually enough to produce intoxication, several regions legally
differentiate between marijuana and hemp based on the 0.3% THC threshold [3]. Hemp
is grown for industrial purposes, such as fibers, textiles, and seeds, and contains a very
low level of the psychoactive compound ∆9-tetrahydrocannabinol (THC) [4]. In contrast,
marijuana is cultivated for its THC-rich flowers and extracts, primarily for recreational or
medicinal use, and it is selectively bred for high THC concentrations. The key difference
lies in their intoxicating potential, with hemp having negligible THC content [5].

Artificial intelligence methods have been increasingly applied to various aspects
of cannabis agriculture in recent years. Seed classification has been a topic of exten-
sive research, with studies employing various approaches including traditional manual
methods [6–9], image processing techniques [10–15], and modeling techniques [16–23].
On the other hand, Sieracka et al. [24] utilized artificial neural networks to predict in-
dustrial hemp seed yield based on cultivation data, showcasing the potential of AI in
optimizing hemp production. In a different application, Bicakli et al. [25] demonstrated
the effectiveness of random forest models in distinguishing illegal cannabis crops from
other vegetation using satellite imagery, which could aid in monitoring and regulation
efforts. Ferentinos et al. [26] introduced a deep learning system that leverages transfer
learning to identify diseases, pests, and deficiencies in cannabis plant images, highlighting
the potential of AI in early detection and intervention. More recently, Boonsri et al. [23]
applied deep learning-based object detection models to differentiate between male and
female cannabis seeds from augmented seed image datasets, demonstrating the ability
of AI to assist in gender-based seed sorting. Despite these advancements, applying deep
learning techniques for cannabis seed variety detection and classification remains an area
with untapped potential, warranting further research and exploration. However, tradi-
tional manual methods are often time-consuming and labor-intensive, relying on visual
inspection and biochemical analysis. Image processing techniques have improved accuracy
but struggle with handling variations in seed appearance and imaging conditions. Machine
learning and deep learning approaches, categorized as modeling techniques, have achieved
high accuracy but often lack robustness and primary data, particularly when classifying
extremely similar seeds. Furthermore, many studies rely on a limited set of features for
classification and fail to address the need for standardized evaluation metrics and bench-
marks. Another key challenge that researchers faced was the variability in seed quality
and genetics, which can impact the reproducibility and reliability of research findings.
Ensuring seed purity and genetic stability is crucial but can be difficult due to the lack of
standardized seed certification and analysis methods. However, to overcome these chal-
lenges, this research builds upon and significantly extends our previous work on cannabis
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seed variant detection using Faster R-CNN. While our previous study [27] focused solely
on the Faster R-CNN architecture with a ResNet50 backbone and explored various loss
functions, the current research broadens the scope considerably. We now aim to include a
comprehensive comparison between Faster R-CNN and RetinaNet, incorporate additional
backbone architectures (ResNet101 and ResNeXt101), and integrate the insights gained
from our previous loss function analysis. This expanded investigation aims to provide a
more thorough understanding of deep learning approaches for cannabis seed detection and
classification. The dataset [28] used in this study is a collection of cannabis seed variants
from 17 different categories, which was used in our previous study [27] as well. The main
objective of this paper is to classify seeds of these 17 kinds of cannabis. Our study aims to
fill previous research gaps by utilizing deep learning algorithms to precisely identify and
outline the bounding box regions of various cannabis seed varieties. Key contributions of
this research are given below:

• Extension of our previous work on cannabis seed detection, incorporating additional
object detection architectures (RetinaNet alongside Faster R-CNN) and expanding the
analysis scope.

• Unlike previous studies, which focused on limited seed varieties [23], this research
classifies seeds from 17 different cannabis varieties, providing in-depth metrics on
detection accuracy and processing speed.

• Integration of optimal loss functions identified in our earlier study, applied to an
expanded set of model configurations.

• This study employs state-of-the-art deep learning models, including ResNet 50, ResNet
101, ResNext 101, and RetinaNet, to enhance the accuracy and efficiency of cannabis
seed detection and classification.

• Validation and extension of our previous findings, offering refined insights into effec-
tive deep learning approaches for cannabis seed classification and detection.

The paper is structured as follows: Section 2 delves into the related work, providing
an overview of prior research in the field. Section 3 outlines the dataset used, along with
the data pre-processing steps and the training methodology employed. Section 4 elaborates
on the object detection models, including their architectures and the backbone networks
utilized in our experiments. The experimental results are presented in Section 5, where
we discuss our findings and compare the performance of the various object detectors. In
Section 6, we presented the discussion, and, finally, Section 7 presents the conclusions of
this research.

2. Related Work

Several studies have already been done on seed classification. We can divide them
into three categories: the traditional (manual) method, image processing, and modeling.
The traditional method [6–9] of seed classification involves visual inspection, biochem-
ical seed identification, machine vision, and DNA analysis for accurate categorization.
Additionally, image processing methods are, again, divided into three categories: struc-
tural method [10–12], threshold method [13,29,30], and spectral method [14,15,31]. The
structural method analyzes patterns, shapes, and relationships between different image
elements to extract meaningful information and enhance understanding. In contrast, the
threshold method concerns setting a specific intensity level, or threshold, to segment
an image into different regions based on pixel values. On the other hand, the spectral
method involves the analysis of different wavelength bands within the electromagnetic
spectrum. The modeling technique usually learns patterns and features from a labeled
dataset. Machine learning and deep learning are the most common modeling techniques
for classification. These models, often convolutional neural networks, extract hierarchical
representations of an image. During training, the model adjusts its parameters to minimize
the difference between predicted and actual labels. Once trained, the model can generalize
its learned patterns to detect objects or features in new, unseen images. In seed detection
and classification, several works have been conducted on machine learning [16–19,32,33],
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and deep learning [20–22,34–37]. In Figure 1, we summarize works conducted on seed
detection and classification.

Seed Detection and
Classification Approaches

Traditional
Method

Image
Processing Modeling

Medicinal
[6], Rice

[7,8],
Corn [9]

Structural Threshold Spectral

Pepper [10],
Soybean

[11],
Corn [12]

Corn [29],
Soybean

[30],
Maize [13]

Corn [31],
Maize [14],

Soybean
[15]

Machine
Learning

Deep
Learning

Bean [16],
Corn [17],
Soybean
[18,32],

Urochloa
Brizantha

[33],
Cotton [19]

Weed [34],
Páramo

[35], Wheat
[20,36],

Rice [21],
Hemp [37],
Corn [22],
Cannabis

[23]

Figure 1. Taxonomy of several seed detection and classification studies.

While previous research on cannabis agriculture has employed deep learning methods
that have demonstrated potential in the gender screening of cannabis seeds [23], their
effectiveness in discriminating between seed varieties has not been investigated. Addi-
tionally, this study has not categorized their research into multiple classes of seeds. In
image processing, Ahmed et al. [10] worked on applying X-ray CT scanning to pepper seed
analysis, employing recycling, feature extraction, and classification to robustly categorize
seeds into viable and nonviable groups. Pereira et al. [11] addressed soybean seed quality
challenges, introducing an image analysis framework that significantly enhanced vigor
classification, achieving 81% accuracy. Meanwhile, Zhang et al. [12] innovatively utilized
deep learning and edge detection for internal crack detection in corn seeds, presenting the
optimized S2ANet model with 95.6% average precision. However, Table 1 shows a compact
summary of the contributions of seed classification and detection by modeling techniques.

Table 1. Advancements and limitations of seed classification and detection in modeling.

Ref. Contributions Algorithms Accuracy Limitation

Luo et al. [34]

Created a
nondestructive

intelligent picture
identification system

using deep
convolutional neural
network models like

AlexNet and
GoogLeNet to reliably

detect 140 weed
seed species.

AlexNet, GoogLeNet,
VGG-16, SqueezeNet,

Xception
93.11% Detection robustness of

the proposed method
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Table 1. Cont.

Ref Contributions Algorithms Accuracy Limitation

Khan et al. [16]

Implemented machine
learning algorithms to

classify dry beans.

LR, NB, KNN, DT, RF,
XGB, SVM, MLP 95.4%

Bean suture axis was
ignored due to its

enormous time
requirement.

Dubey et al. [36]

Applied machine
learning model to

classify the variety of
the wheat seed.

ANN 88% Their accuracy could
be better.

Cheng et al. [21]

Machine learning
applications have been

applied to detect the
defect of the rice seed.

Back-propagation
neural network 91–99% The algorithm could

be better.

Heo et al. [37]

Developed a
super-high purity seed

sorting system with
500-fps throughput,

using low-latency deep
neural network image

recognition

Yolo 99.81%
This method can be

applied to acquire clean
seed samples.

Bi et al. [38]

Developed an
automatic maize seed
identification model

using transformer and
deep learning.

AlexNet, Vgg16,
ResNet50,

Visio-Transformer,
Swin-Transformer

96.53%

The model’s capability
of classifying seeds that

are extremely similar
still requires further

improvement.

Madhavan et al. [20]

Created a model for
post-harvest

classification of
wheat seeds.

ANN 96.7% No primary data.

Javanmardi et al. [22]

Applied machine
learning for corn seed

classification.
CNN, ANN 98.1% No primary data.

Ali et al. [17]

Applied machine
learning for corn seed

classification.
MLP, LB, RF, BN 98.93% Few features for

classification.

Jamuna et al. [19]

Classification of cotton
seed quality based on

different growth stages.
NB, MLP, J48 98.78% No primary data.

Table 1 provides an overview of various research contributions in the field of seed clas-
sification using machine learning and deep learning algorithms. Luo et al. [34] introduced
a nondestructive intelligent image recognition system employing deep CNN models like
AlexNet and GoogLeNet, achieving a notable accuracy of 93.11% in detecting 140 weed
seed species. Their study proposes a solution through nondestructive intelligent image
recognition. An image acquisition system captures and segments images of single weed
seeds, forming a dataset of 47,696 samples from 140 species. Their research emphasizes the
importance of selecting a CNN model based on specific identification accuracy and time
constraints. A notable limitation of this study is the robustness of the proposed detection
method. Khan et al. [16] worked on classifying dry beans using machine learning algo-
rithms such as LR, NB, KNN, DT, RF, XGB, SVM, and MLP, achieving a high accuracy of
95.4%, with the limitation being the considerable time requirement for ignoring the bean
suture axis. Dubey et al. [36] applied an artificial neural network to classify wheat seed
varieties with an accuracy of 88%, highlighting the space for improvement in accuracy.
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Cheng et al. [21] used machine learning for rice seed defect detection, employing Principal
Component Analysis and a back-propagation neural network with an accuracy range of
91–99%, suggesting potential improvements in the algorithm. Lawal [39] proposed a deep
learning model for fruit seed detection using YOLO, achieving 91.6% accuracy, with the
need for accuracy enhancement specifically in the YOLO Muskmelon model. Heo et al. [37]
developed a high-throughput seed sorting system using YOLO, reaching an impressive
accuracy of 99.81%, showcasing its potential for acquiring clean seed samples. Bi et al. [38]
focused on maize seed identification, employing a range of algorithms such as AlexNet,
Vgg16, ResNet50, Visio-Transformer, and Swin-Transformer, achieving the best accuracy of
96.53%. However, their work identified a need for improvement in classifying extremely
similar seeds. Madhavan et al. [20] conducted post-harvest classification of wheat seeds
using artificial neural networks and achieved an accuracy of 96.7%, but their study lacked
primary data. Javanmardi et al. [22] concentrated on corn seed classification, employing
CNN and ANN, achieving a good accuracy of 98.1%. Ali et al. [17] explored corn seed
classification using various machine learning algorithms, including MLP, LB, RF, and BN,
achieving a high accuracy of 98.93%, but faced limitations due to the scarcity of features for
classification. Jamuna et al. [19] focused on cotton seed quality classification at different
growth stages, utilizing algorithms like NB, MLP, and J48, achieving an accuracy of 98.78%,
with the limitation of lacking primary data in their study.

While seed analysis has been explored using various techniques, research specifically
focused on cannabis seed detection and classification remains limited. Boonsri et al. [23]
made initial strides in this field by classifying a limited number of cannabis seed varieties
using convolutional neural networks. However, their work, along with other studies in
seed object detection, revealed several persistent gaps. These include limited publicly
available datasets, inadequate methods for handling variations in seed appearance and
imaging conditions, and a lack of standardized evaluation metrics and benchmarks. Ad-
ditionally, existing approaches often rely on traditional computer vision methods that
may struggle with complex seed shapes and textures. To address these research gaps,
we initiated a comprehensive study on cannabis seed detection and classification. Our
previous work [27] laid the groundwork in this domain by exploring the use of Faster
R-CNN for detecting and classifying 17 varieties of cannabis seeds. Using a locally sourced
dataset from Thailand, we investigated various loss functions (L1, IoU, GIoU, DIoU, and
CIoU) with a ResNet50 backbone, achieving a mAP score of 94.08% and an F1 score of
95.66%. This study emphasized the importance of accurate seed variant identification for
precision breeding, regulatory compliance, and meeting diverse market demands. Building
upon our previous research, the current study aims to further advance the field of cannabis
seed detection and classification. We expand our investigation to include multiple object
detection architectures and backbone networks, providing a more comprehensive analysis
of state-of-the-art deep learning techniques in this domain.

3. Methods and Materials

Building upon our previous work [27], we have significantly expanded our methodol-
ogy to provide a more comprehensive analysis of cannabis seed detection and classification
techniques. Our current study extends the investigation in two key areas. First, while
our previous study focused exclusively on the two-stage Faster R-CNN model, we now
include RetinaNet, a one-stage detector alternative. This addition allows us to compare the
performance of different architectural approaches in the context of cannabis seed detection.
Second, we have broadened our evaluation of backbone networks. In addition to the
ResNet50 used in our previous work, we now assess the performance of ResNet101 and
ResNeXt101. This expansion aims to identify potential improvements in feature extraction
and overall model performance. To ensure consistency and enable direct comparisons with
our previous findings, we utilized the same dataset of 17 cannabis seed varieties as in our
earlier study.
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3.1. Data Description

The dataset [28] utilized in this study is a collection of cannabis seed varieties en-
compassing 17 distinct categories. These seeds are readily available in Thailand. To the
best of our knowledge, this dataset is the first of its kind to be made publicly accessible,
and this research utilized this dataset for cannabis seed classification. Captured using an
Apple iPhone 13 Pro, the dataset comprises 3335 high-resolution photos with dimensions
of 3023 × 4032 pixels, reduced to 3319 after excluding blurred images. All photos feature a
white backdrop but were taken from various angles and under different lighting conditions.
Table 2 presents the seed types along with the number of images collected, and Figure 2
provides examples of several cannabis seed varieties.

Table 2. Original dataset provided by [28].

Seed Variant Abbreviation Number of Collected Images

AK47 photo AK47 106
Blackberry (Auto) BBA 203

Cherry Pie CP 50
Gelato GELP 327

Gorilla Purple GP 554
Hang Kra Rog Ku HKRKU 153

Hang Kra Rog Phu Phan ST1 HKRPPST1 249
Hang Suea Sakon Nakhon TT1 HSSNTT1 93

Kd KD 49
Kd_kt KDKT 147

Krerng Ka Via KKV 141
Purple Duck PD 151
Skunk (Auto) SKA 233

Sour Diesel (Auto) SDA 327
Tanaosri Kan Daeng RD1 TKDRD1 157
Tanaosri Kan Kaw WA1 TKKWA1 183

Thaistick Foi Thong TFT 212

Total 3335

Figure 2. High-resolution images of five different cannabis seed types, each with dimensions of
3024 × 4032 pixels, capturing fine details at 72 dpi resolution. The seeds, ranging from 2 to 5 mm in
size, include (a) AK47, (b) Gelato, (c) Gorilla Purple, (d) KDKT, and (e) Sour Diesel Auto.

3.2. Data Pre-Processing
3.2.1. Bounding Box Annotation

Instead of manually labeling each image, which is both time-consuming and labor-
intensive, we opted for a more efficient approach using Grounding DINO [40] in this
research, which is an open-set object detector. Grounding DINO takes an input image
and associated noun phrases to generate multiple two-dimensional bounding boxes corre-
sponding to the objects identified within the image. The model uses a robust mechanism
for grounding, which involves associating visual features with the provided noun phrases,
enabling it to localize and accurately label objects, even in unfamiliar contexts. This process
involves several stages, including feature extraction, where the image is analyzed to extract
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high-level features, and transformer-based decoding, where these features are matched
with the noun phrases to produce bounding boxes. The bounding boxes generated are then
refined to ensure precision, allowing for automatic and efficient annotation of large datasets
without the need for manual labeling. Unlike traditional object detectors, open-set detectors
like Grounding DINO can identify object categories beyond those on which they were
specifically trained. This capability enables the model to generate multiple 2D bounding
boxes for an input image based on associated noun phrases. By utilizing Grounding DINO,
we could automatically extract object boundaries from the dataset without the need for
manual annotation, as the model could identify and delineate object instances based on
the provided text queries. In this research, we added “all seeds” as text queries. Figure 3
illustrates an example of bounding boxes applied to our cannabis seed dataset.

Figure 3. Example of ground truth bounding boxes for cannabis seeds. The high-resolution images
(3024 × 4032 pixels, 72 dpi) display cannabis seeds with bounding boxes annotated for object detection.
The precise annotations facilitate the training and evaluation of detection models, capturing seeds
typically ranging from 2 to 5 mm in size.

3.2.2. Data Augmentation

Data augmentation is a crucial technique employed to enhance dataset size, partic-
ularly in scenarios where data availability is limited [41]. By applying various image
transformations, the model’s ability to generalize to unseen data is improved, especially
during the validation phase. These transformations include geometrical transformations,
color adjustments, and blur operations. Geometrical transformations encompass random
horizontal or vertical flips, translations in both horizontal and vertical directions, resizing
to different scales, and rotations. Color adjustments involve modifying brightness and con-
trast, altering the values of red, green, and blue channels, randomizing hue, saturation, and
value, and shuffling the order of RGB channels. Blur operations entail applying random
blur or median blur to the image. Implementation of these augmentation techniques is
facilitated using the Albumentations library [42]. Specifically, the augmentation settings in-
cluded random flips with a 50% probability, a maximum image shift of 0.0625, a maximum
scale change of 0.1, and a maximum rotation angle of 45 degrees. Furthermore, brightness
and contrast were randomly adjusted between 0.1 and 0.3 with a 20% chance, shifts in RGB
channels up to 10 intensity levels each, and maximum changes in hue, saturation, and value
of 20, 30, and 20, respectively, for 10% of the images. Additional augmentation parameters
included a 10% probability of channel shuffling and a 10% probability of applying random
blur or median blur with a maximum kernel size of 3 during image augmentation. Before
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data augmentation, we implemented an efficient annotation process using Grounding
DINO [40], an open-set object detector. This approach significantly reduced the manual
labor typically associated with bounding box annotation. Grounding DINO leverages
natural language prompts to identify and localize objects in images, even for categories
it was not explicitly trained on. For our cannabis seed dataset, we used prompts such as
’cannabis seed’ or a specific variety of names to generate bounding boxes automatically.
This method proved particularly effective for our large dataset of 3319 high-resolution
seed images, ensuring consistent and accurate annotations across all 17 cannabis seed
varieties. The Grounding DINO model’s ability to generalize to unseen object classes made
it ideal for our diverse seed dataset, providing a solid foundation for subsequent object
detection tasks.

3.2.3. Splitting of the Dataset

Following the annotation process, we divided the dataset into three subsets: training,
validation, and test sets in this research. Table 3 provides a breakdown of the number of
images per seed variety and the distribution across the three subsets. Approximately 53% of
the dataset, consisting of 1771 images, was allocated for training our object detection models.
During the training process, we used around 22% of the dataset, comprising 723 images, for
validation purposes to assess the model’s performance. The remaining 25% of the dataset,
825 images in total, was set aside for testing the trained model’s performance on unseen
data. This approach ensures a robust evaluation of the model’s generalization capabilities.

Table 3. Quantity of images and instances per seed type in the training, validation, and test-
ing datasets.

Seed Variety Training
Images

Training
Instances

Validation
Images

Validation
Instances Test Images Test Instances

AK47 57 321 21 123 28 160
BBA 113 565 34 170 55 275
CP 22 67 11 33 17 57
GELP 178 894 70 350 79 400
GP 303 909 125 375 126 378
HKRKU 83 427 38 190 32 160
HKRPPST1 123 693 61 337 64 355
HSSNTT1 39 265 18 122 34 234
KD 39 195 6 30 3 15
KDKT 82 562 42 278 23 171
KKV 65 325 37 185 34 170
PD 76 380 36 180 37 185
SKA 117 585 49 245 67 335
SDA 167 668 69 276 89 356
TKDRD1 93 465 29 145 34 170
TKKWA1 101 553 32 174 49 267
TFT 113 589 45 233 54 270

Total 1771 8463 723 3446 825 3958

3.3. Training of the Dataset

In this study, we employed PyTorch in conjunction with the mmdetection object de-
tection toolbox [43] to train two distinct models, namely Faster R-CNN and RetinaNet,
utilizing the computational power of an NVIDIA RTX 3090 GPU. The initialization of these
models involved leveraging weights pre-trained on the COCO dataset [44], a common prac-
tice to benefit from the knowledge gained from a large-scale dataset. To ensure uniformity
in input dimensions, all images were resized to 360 pixels in width and 640 pixels in height.
The training regimen spanned 100 epochs and employed stochastic gradient descent (SGD)
optimization. A learning rate of 0.02 was assigned to Faster R-CNN, while RetinaNet was
optimized with a slightly lower learning rate of 0.01. To prevent overfitting and ensure
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model stability, weight decay was set to 0.0001, and momentum was fixed at 0.9. The choice
of batch sizes was crucial for efficient training: a batch size of 2 was used for training, 1 for
validation, and 1 for testing. In this study, we implemented multi-stage learning rate strate-
gies, specifically employing Linear Decay and Cosine Annealing schedules, to dynamically
adjust the learning rate during the training of our Faster R-CNN and RetinaNet models. The
Linear Decay scheduler reduces the learning rate at the outset of training by multiplying
the original learning rate with a predefined factor. Subsequently, it gradually increases the
learning rate back to its original value over a specified number of training steps. For our
experiment, we set the multiplying factor to 0.001 and the number of training steps to 500.
Conversely, using a cosine function, the Cosine Annealing scheduler facilitates a smooth
decay of the learning rate. This scheduler commences by decreasing the learning rate until
it reaches a minimum value. In our experiment, we set this minimum learning rate to 0
and determined that the learning rate decayed over a maximum of 100 epochs. After each
training epoch, model performance was evaluated using the validation dataset. Predictions
were considered positive if they achieved an Intersection over Union (IoU) threshold of
0.5, below which they were classified as negative. To preserve the best-performing model,
checkpoints were saved based on the evaluation metric, ensuring that the final model
selected for evaluation was the most optimal.

Figure 4 illustrates the proposed workflow for this research. Initially, the dataset is
divided into three subsets: training, testing, and validation. The training set is utilized to
train the object detection model, while the testing set is used to evaluate its performance.
Subsequently, the training data undergo data augmentation to enhance the model’s ability
to generalize to unseen data. Following data augmentation, the object detection model
is applied to the augmented data to perform detection tasks. The results of the detection
process are then analyzed to evaluate the model’s performance.

Figure 4. Proposed model workflow for cannabis seed detection and classification. The process
includes data annotation, dataset splitting, and augmentation. The object detection model uses classifi-
cation and regression layers for seed variety identification and bounding box prediction. Performance
is evaluated using IoU, mAP, recall, and F1 score for both detection and classification tasks.
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4. Object Detection Models
4.1. RetinaNet Network Architecture

RetinaNet [45] is a one-stage object detector with a backbone network and two task-
specific subnetworks (see Figure 5). The backbone network extracts the hierarchical feature
representations from the input images. The first subnetwork is responsible for the object
classification, and the second subnetwork is a regressor that generates the bounding box
coordinates. Next, we describe the individual components of RetinaNet. We used three
backbones, ResNet50, ResNet101, and ResNeXt101 [46], in our RetinaNet architecture. All
of these backbones were pre-trained on ImageNet. The backbone’s features from each
convolution block were then used as input for the next component, the feature pyramid
network (FPN).

Figure 5. Architecture of the RetinaNet network [47]. The diagram illustrates the bottom–up pathway
(stages 1–4) and the top–down pathway (C2–C4) with 3 × 3 convolution layers producing feature
maps P2, P3, and P4. The 2x upsampling block integrates features, resulting in predictions for the
input image containing cannabis seeds.

RetinaNet uses a feature pyramid network [45] to construct a multi-scale feature
pyramid using the output from different convolution blocks of the backbone network
(Figure 5). It starts by creating an upsampling path from the lower-resolution features in
the top layers of the backbone to the higher-resolution layers at the bottom. This top–down
pathway is merged with the bottom–up feature maps from the backbone layers using lateral
connections. We used three 1 × 1 lateral convolutions that reduce the bottom–up feature
maps (512, 1024, and 2048) from the backbone to a 256-channel output and connected them
with the upsampled top–down feature maps. The merged features then passed through five
3 × 3 convolutions that we applied to output five 256-channel feature maps in the feature
pyramid. At each pyramid level, we used a predefined set of anchor boxes as reference
boxes as criteria to classify object/non-object and as bounding box regression targets. The
anchors had aspect ratios of (1:2, 1:1, and 2:1) in each pyramid level. Each anchor had a
length of 17 one-hot vectors to classify the object class and a vector with length four as
a regression target. We attached two separate fully connected networks—classification
and regression subnetworks—to each level of the feature pyramid and applied four 3 × 3
convolutional layers, each with 256 channels, followed by another 3 × 3 convolution to the
feature maps with 256 channels. The classification subnetwork predicted the probability
of a class object present at each anchor box. We then applied sigmoid activations in the
classification layer to get binary predictions per anchor box. Meanwhile, the box regression
subnetworks refined the anchor box coordinates to localize the objects and output four
vectors per anchor box. To optimize RetinaNet, we used Focal loss for the classifications
and L1 loss for the regressions.
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4.2. Faster R-CNN Network Architecture

There are five parts to Faster R-CNN [48], which is an object detector with two stages.
Step one of the Faster R-CNN process involves the network components known as the
backbone, feature pyramid, and region proposal. Step two of the Faster R-CNN pipeline is
the region of interest align, classifier, and bounding box regressor.

The Faster R-CNN network (Figure 6) is built using a ResNet50 [49] model that has
already been trained on ImageNet. By presenting the idea of skip connections, residual
networks address the vanishing gradients issues that plague extremely large convolutional
networks. The idea behind skip connection is to shorten the gradient flow during training
by skipping activations of earlier levels and going straight to one or more layers after
it. The feature pyramid network’s bottom–up approach begins with the backbone, the
first processing layer. It extracts features from the input picture at many intermediary
stages. To determine the level of the pyramid, a feature pyramid network [50] uses features
produced by the final residual blocks of the ResNet 50 backbone’s conv2, conv3, conv4,
and conv4 operations. It aids the model in spotting things in pictures of varying sizes.
FPN establishes a lateral link between the bottom–up and top–down pathways. From the
bottom–up pyramid stages, our FPN reduced the four output feature maps (256, 512, 1024,
and 2048) to fixed 256-channel outputs using four lateral 1 × 1 convolutions combined
with the upsampled top–down route. Using the combined feature map as input, we ran
four 3 × 3 convolutions, which produced a four-tiered feature pyramid with 256-channel
feature maps at each tier.

Figure 6. Architecture of the Faster R-CNN network. The input image undergoes feature extraction via
a ResNet backbone, producing a high-dimensional feature map. This map is subsequently processed
by the region proposal network (RPN), which employs sliding window mechanisms to propose
candidate object regions. These regions are refined through bounding box regression and softmax
classification within the Faster R-CNN module, culminating in precise object detection predictions.

The region proposal network (RPN) receives feature maps from the FPN [51]. The
feature pyramid extracts maps of features that the RPN uses to run a small network. The
256-channel feature map that came from the convolutional layer was fed into our RPN head
using a 3 × 3 convolution with 256 channels, which was then activated using ReLU. At each
point along the sliding window that covers the feature map, RPN employed anchor boxes to
produce a group of potential regions with varying sizes and aspect ratios. Using one scale (8)
and three aspect ratios (1:2, 1:1, and 2:1), our anchor generator generated regional solutions
for each sliding window. The RPN layer used these candidate proposals’ objectness scores
to filter them; therefore, they were not final. How much of an object or background is in
the region’s proposal was determined by its objectness score. Two completely linked layers,
box classification and box-regression, were fed each area suggestion. A 1 × 1 256-channel
convolution layer was used for classification after the convolution layer, and a parallel
1 × 1 12-channel convolution layer was used to regress the coordinates of the bounding
boxes. The objectness value for each area suggestion was generated by the first layer, a
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binary classifier that used the Intersection over Union metric. In the second layer, the
region proposal’s bounding box was constructed. The bounding box regression layer
employed L1 loss for classification, whereas the sigmoid outputs were used to compute
cross-entropy loss for classification. To cut down on redundant region recommendations,
we used non-maximum suppression according to their classification scores. We removed
boxes with significant levels of overlap and kept no more than 1000 region suggestions per
picture, setting the IoU threshold for NMS at 0.7. Varieties of size and aspect ratio were
produced by the RPN’s region suggestions. The Fast R-CNN branch took in proposals and
used four ROI align [52] layers to extract features. Each feature was a fixed size of 7 × 7
and was produced by the branch. Using ROI pooling in the original Faster R-CNN study, a
fixed-length feature vector was generated from each area suggestion. However, since ROI
align could fix the round-off mistakes that ROI pooling made, we opted to employ it instead.
ROI align took the region suggestions and utilized max-pooling and bilinear interpolation
to get fixed-length feature vectors. One fully connected layer used the 7 × 7 feature vector
from the ROI align to forecast the class score using cross-entropy loss. In contrast, the other
used regression to forecast the position of the bounding box. We considered the suggestion
a success if the IoU was higher than the cutoff value of 0.5. L1 loss, IoU loss, Generalized
IoU loss, Distance IoU loss, and Complete IoU loss were among the five loss functions
employed to minimize the regression layer’s loss in the bounding box regressor layer.

5. Experimental Evaluation
5.1. Evaluation Metrics

In our experiments, we used four evaluation metrics [53] to evaluate the performance
in our object detection models. These metrics included Intersection over Union, mean
average precision, recall, and F1. These metrics are defined as follows.

5.1.1. Intersection over Union (IoU)

Intersection over Union is the most commonly used metric to assess the bounding
box prediction object detection task quality. IoU quantifies the similarity of the predicted
bounding box to the ground truth bounding box. The IoU is the ratio between the area
of overlap between the ground truth bounding box and the predicted bounding box and
the union area of these two bounding boxes. Equation (1) provides the formula to derive
the IoU. In this context, GT is the ground truth bounding box, and PB is the predicted
bounding box.

IoU =
Area(GT ∩ PB)
Area(GT ∪ PB)

(1)

This metric provides a value between 0 and 1, where a higher value indicates a tight
similarity between the ground truth and the predicted box. During the prediction, we used
a range of IoU threshold, specifically from 0.50 to 0.95 in increments of 0.05, to evaluate our
models. As the IoU threshold increases, the criterion for considering a predicted bounding
box as a true positive becomes stricter and requires more overlap for a detection to be
considered positive.

5.1.2. Mean Average Precision (mAP)

Mean average precision (mAP) [54] is a commonly used metric in object detection
and image retrieval tasks to evaluate the performance of a model. It combines two key
aspects, precision and recall, to provide a single, easy-to-interpret value. Precision is the
ratio of correctly predicted positive instances to the total positive instances, and recall is the
ratio of correctly predicted positive instances to the total positive instances. The precision–
recall curve is a graph that shows the trade-off between precision and recall at different
thresholds. To calculate mAP, we first computed each class’s average precision (AP). AP is
calculated by computing the area under the precision–recall curve (PR curve) [27]. The PR
curve is obtained by plotting precision against recall for different confidence thresholds.
Equation (2) shows the general formula to calculate AP for a single class:
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AP =
n

∑
k=1

(Rk − Rk−1) · Pk (2)

where n is the number of retrieved items, Pk is the precision at cutoff k in the list, Rk is the
recall at cutoff k in the list, and the summation is over all retrieved items. After calculating
AP for each class, we computed mAP in Equation (3) by taking the average of the AP values
across all classes, where C is the total number of classes.

mAP =
∑C

c=1 APc

C
(3)

mAP provides a single value that represents the model’s overall performance across
all classes. Higher mAP values indicate better performance, with 1.0 being the highest
achievable mAP, indicating perfect performance.

5.1.3. Recall

Recall is a crucial metric in evaluating the performance of classification models. It is
defined as the ratio of true positives (TPs) to the sum of true positives and false negatives
(FNs). Here, TP refers to seeds with an IoU value greater than the given threshold and
correctly identified class labels, and FN refers to actual seeds that are present but not
detected by the model, either due to missing bounding boxes, IoU values below the
threshold, or incorrect classification. In a more refined form, the recall equation incorporates
additional parameters to adjust its sensitivity and stability.

Recall =
α · TP

(α · TP) + (β · FN) + γ
(4)

Here, α and β are weighting factors for true positives and false negatives, respectively,
and γ is a small constant added to the denominator to avoid division by zero. This refined
equation allows for a nuanced recall assessment by balancing the influence of true positives
and false negatives and ensuring numerical stability, providing a more comprehensive
understanding of the model’s ability to identify positive instances correctly.

5.1.4. F1 Score

The F1 score is the harmonic mean of precision and recall. The harmonic mean gives
more weight to small values, so if either the recall or precision score is low, the F1 score
will be lower. Starting with the basic formula,

F1 = 2 ·
(

P · R
P + R

)
(5)

where P represents precision and R represents recall, we can introduce additional complex-
ity by defining intermediate variables. Let α = P · R and β = P + R. Using these variables,
the F1 score can be rewritten as

F1 =
2α

β
(6)

This formulation emphasizes the relationship between precision and recall in deter-
mining the F1 score.

5.2. Results

This section presents a detailed description of the Faster R-CNN and RetinaNet models’
performance on the evaluation metrics.
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5.2.1. RetinaNet

In this research, we trained three RetinaNet models with different backbones to
evaluate the performance of the single-stage object detector RetinaNet: (a) RetinaNet with
a ResNet50 backbone (mR50), (b) RetinaNet with a ResNet101 backbone (mR101), and
(c) RetinaNet with a ResNeXt101 backbone (mRX101).

Table 4 shows the performance of the three RetinaNet models on different CNN
backbones on evaluation metrics, mean average precision at different IoU thresholds,
average recall, and F1 score. Analyzing the strict mAP between IoU 0.5–0.95, mR101
achieves the highest score of 0.9458, slightly outperforming mR50 at 0.9449 mAP and
mRX101 at 0.9426 mAP. However, at IoU 0.50, mR50 outperforms the other two models
with a 0.9485 mAP. Examining recall capabilities, mR101 achieves a higher score of 0.985,
closely followed by mR50 at 0.982 and mRX101 at 0.97. The F1 score, which balances
both precision and recall, shows a similar trend—mR101 attains the best F1 score of 0.965,
followed closely by mR50 at 0.9631. Although the mRX101 model has the largest backbone,
it slightly underperforms compared to the ResNet models across all metrics. This suggests
that there might be challenges in effectively tuning and optimizing this high-capacity model
for the given dataset.

Table 4. Mean average precision, average recall, F1, and real-time inference performance results
for RetinaNet.

Model mAP @ IoU:0.50:0.95 mAP @ IoU:0.50 Average Recall F1 FPS

mR50 0.9449 0.9485 0.982 0.9631 16.1
mR101 0.9458 0.9481 0.985 0.9650 15.1
mRX101 0.9426 0.9448 0.970 0.9561 14.5

Table 4 also provides the real-time inference performance of the three RetinaNet
models regarding inference speed and frames per second. The RetinaNet model with the
ResNet50 backbone (mR50) demonstrates the fastest inference speed at 62.1 ms per image,
equivalent to processing 16.1 frames per second. In contrast, the larger ResNet101-based
model (mR101) achieves a slightly slower speed of 66.2 ms per inference or 15.1 FPS. Finally,
the most complex ResNeXt101 architecture (mRX101) attains the lowest speed of 69 ms per
image, equal to 14.5 FPS.

Table 5 compares the per-class detection performance of the RetinaNet models on
the mean average precision metric calculated at two IoU thresholds of 0.5:0.95 and 0.5.
For the strict IoU range (0.50:0.95), mRX101 achieves the highest mAP scores on nine out
of the seventeen classes—‘AK47’, ‘BBA’, ‘HKRKU’, ‘HSSNTT1’, ‘KD’, ‘KKV’, ‘PD’, ‘SKA’,
and ‘TFT’, while the mR101 model attains top results in eight classes (such as ’TKDRD1’
and ‘TKKWA1’). Meanwhile, mR50 ranks first in seven classes only (for instance, ‘GELP’
and ’KDKT’). However, with the more relaxed ≥ 0.5 IoU criterion, the relative rankings
flip—the mR50 now demonstrates leading performance on 11 classes, surpassing both
mRX101 and mR101. The mR50 model achieves the highest mAP score at both strict and
lenient IoU thresholds in detecting the challenging ‘CP’ class.

Figure 7 presents qualitative results for RetinaNet models with different backbones,
demonstrating their performance on two seed classes: KKV and SDA. For the KKV class,
shown in the first row of Figure 7, the RetinaNet model with a ResNet101 backbone exhibits
superior performance, accurately predicting the bounding box and correctly classifying the
seeds as KKV. In contrast, the ResNet50 and ResNeXt101 backbones show mixed results.
While both correctly predict the bounding box locations, they struggle with classification
accuracy. The ResNet50 backbone misclassifies the four seeds as KD, GELP, and HKRPPST1,
while the ResNeXt101 backbone incorrectly identifies two seeds as GP.
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Table 5. Classwise mean average precision at IoU threshold 0.5 to 0.95 and at 0.5 for RetinaNet.

Classes mAP @IoU:0.5:0.95 mAP @IoU:0.5

mR50 mR101 mRX101 mR50 mR101 mRX101

AK47 0.981 0.988 0.988 0.985 0.988 0.989
BBA 0.990 0.994 0.994 0.997 0.998 0.997
CP 0.394 0.381 0.362 0.402 0.385 0.365
GELP 0.968 0.966 0.964 0.968 0.966 0.964
GP 0.966 0.965 0.965 0.973 0.972 0.970
HKRKU 0.999 0.999 1.000 1.000 1.000 1.000
HKRPPST1 0.968 0.969 0.968 0.974 0.975 0.974
HSSNTT1 0.966 0.967 0.980 0.967 0.967 0.982
KDKT 0.970 0.966 0.968 0.971 0.966 0.968
KD 1.000 1.000 1.000 1.000 1.000 1.000
KKV 0.991 0.995 0.997 0.997 0.997 0.998
PD 0.998 1.000 1.000 1.000 1.000 1.000
SDA 1.000 1.000 0.999 1.000 1.000 1.000
SKA 0.976 0.976 0.977 0.979 0.978 0.979
TFT 0.997 0.997 0.998 1.000 1.000 1.000
TKDRD1 0.925 0.941 0.893 0.927 0.944 0.895
TKKWA1 0.975 0.975 0.972 0.984 0.981 0.981

K
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V

Ground Truth RetinaNet with ResNet-
50 Backbone

RetinaNet with ResNet-
101 Backbone

RetinaNet with ResNeXt-
101 Backbone

SD
A

Figure 7. Qualitative results of RetinaNet models with different backbones on seed classification
and localization tasks. Top row: KKV seeds. Bottom row: SDA seeds. From left to right: ground
truth, predictions from RetinaNet with ResNet50 backbone, ResNet101 backbone, and ResNeXt101
backbone. KKV seeds are shown in orange, and SDA seeds are shown in red. The ResNet101
backbone demonstrates superior performance across both classes.

The second row of Figure 7 illustrates the models’ performance on the SDA class. Here,
the ResNet101 backbone again demonstrates robust performance, correctly classifying all
seeds and accurately predicting their bounding box locations. The ResNet50 backbone,
however, shows significant classification errors, misidentifying three seeds as HKRPPST1,
AK47, and KDKT, while correctly classifying only one seed. The ResNeXt101 backbone
performs better than ResNet50 but still shows some inaccuracies, misclassifying one seed
as BBA while correctly identifying the remaining three.
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5.2.2. Faster R-CNN

The Faster R-CNN models with different backbones (mFR50, mFR101, and mFRX101)
were evaluated on their performance metrics. In Table 6, it is clearly shown that the
mFR50 model achieves a mAP of 0.9408 across the IoU range of 0.50 to 0.95, while mFR101
and mFRX101 achieve slightly lower mAP scores of 0.9372 and 0.9352, respectively. At
IoU 0.50, mFR50 also performs the best with a mAP of 0.9428, followed by mFR101 at
0.9418 and mFRX101 at 0.9389. In terms of average recall, mFR50 achieves a score of
0.973, outperforming both mFR101 and mFRX101, which score 0.967 and 0.961, respectively.
The F1 score, which balances precision and recall, follows a similar trend, with mFR50
leading at 0.9566, followed by mFR101 at 0.9519 and mFRX101 at 0.9479. This metric
represents the number of images processed per second, indicating the speed of the model
in real-time applications. The mFRX101 model demonstrates the fastest processing speed
at 17.5 frames per second (FPS), followed by mFR50 at 16.8 FPS and mFR101 at 14.2 FPS.
This metric measures the time taken by the model to process a single image, with lower
values indicating faster processing. The mFR50 model achieves the fastest inference speed
at 59.5 ms per image, followed by mFRX101 at 57.1 ms per image and mFR101 at 70.4 ms
per mage.

Table 6. Mean average precision, average recall, F1, and real-time inference performance results for
Faster R-CNN.

Model mAP @ IoU:0.50:0.95 mAP @ IoU:0.50 Average Recall F1 FPS

mFR50 0.9408 0.9428 0.973 0.9566 16.8
mFR101 0.9372 0.9418 0.967 0.9519 14.2
mFRX101 0.9352 0.9389 0.961 0.9479 17.5

Table 7 provides a detailed breakdown of the per-class detection performance of the
Faster R-CNN models at two IoU thresholds. At the stricter IoU range of 0.50:0.95, mFR101
and mFRX101 generally outperform mFR50, with mFR101 achieving the highest mAP
scores in several classes such as ‘HKRKU’, ‘HSSNTT1’, and ‘KKV’. However, at the IoU
threshold of 0.50, mFR50 shows superior performance in many classes, including ‘CP’,
‘TKDRD1’, and ‘TKKWA1’, indicating its ability to detect objects with less strict overlap
requirements. The real-time inference performance of the Faster R-CNN models was
evaluated in terms of inference speed and frames per second (FPS). The mFRX101 model
demonstrates the fastest inference speed at 57.1 ms per image, equivalent to processing
17.5 frames per second. The mFR50 model follows closely behind with an inference speed
of 59.5 ms per image or 16.8 FPS. The mFR101 model has the slowest inference speed at
70.4 ms per image, translating to 14.2 FPS.

Figure 8 compares Faster R-CNN models with different backbone architectures for
seed image classification. The first row showcases the models’ performance on BBA seeds.
The Faster R-CNN model with a ResNet50 backbone accurately localizes and classifies all
BBA seeds correctly. However, the models with ResNet101 and ResNeXt101 backbones,
despite correctly predicting bounding box locations, suffer from misclassification errors.
The ResNet101 variant misclassifies one seed as HKRPPST1 while correctly identifying the
other four, and the ResNeXt101 model misclassifies two seeds as GP.

The second row of Figure 8 demonstrates the models’ performance on SKA seeds.
Faster R-CNN with a ResNet50 backbone achieves perfect bounding box prediction and
classification for all SKA seeds. In contrast, the ResNet101 model struggles, misclassifying
three out of five seeds as HKRPPST1 and only correctly identifying the remaining two. The
Faster R-CNN with a ResNeXt101 backbone also encounters difficulties, misclassifying two
seeds as HKRPPST1 while accurately classifying the other three.
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Table 7. Classwise mean average precision at IoU threshold 0.5 to 0.95 and at 0.5 for Faster R-CNN.

Classes mAP @ IoU:0.5 mAP @ IoU:0.50:0.95

mFR50 mFR101 mFRX101 mFR50 mFR101 mFRX101

AK47 0.984 0.99 0.99 0.984 0.989 0.988
BBA 0.995 0.998 0.998 0.99 0.989 0.99
CP 0.403 0.381 0.353 0.399 0.376 0.346
GELP 0.956 0.955 0.958 0.956 0.954 0.958
GP 0.978 0.981 0.976 0.972 0.974 0.971
HKRKU 1 1 1 1 1 0.999
HKRPPST1 0.959 0.965 0.95 0.957 0.957 0.943
HSSNTT1 0.949 0.959 0.969 0.949 0.958 0.968
KDKT 0.975 0.972 0.968 0.975 0.97 0.968
KD 1 1 1 1 1 0.987
KKV 0.999 0.994 0.996 0.995 0.987 0.991
PD 1 1 1 0.999 0.995 1
SDA 1 1 1 1 0.999 1
SKA 0.977 0.977 0.976 0.976 0.973 0.974
TFT 1 1 1 0.996 0.997 0.997
TKDRD1 0.873 0.873 0.871 0.869 0.862 0.869
TKKWA1 0.98 0.965 0.957 0.976 0.953 0.95
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Figure 8. Qualitative comparison of Faster R-CNN models with ResNet50, ResNet101, and
ResNeXt101 backbones on BBA and SKA seed classification. The models’ predictions are shown
along with the ground truth labels. BBA seeds are shown in blue, and SKA seeds are shown in red.

6. Discussion

This work showcases the contrasting performance characteristics of the two pop-
ular object detection models, RetinaNet and Faster R-CNN, in the context of detecting
and classifying 17 different cannabis seed varieties. While both models demonstrated
impressive capabilities, there were some differences in their performance across various
evaluation metrics.

In terms of the mean average precision (mAP) metric evaluated over the IoU range
of 0.5 to 0.95, the RetinaNet model with the ResNet101 backbone (mR101) emerged as the
top performer with a mAP of 0.9458, slightly outperforming its Faster R-CNN counterpart,
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mFR50, which achieved a mAP of 0.9408. This suggests that the RetinaNet architecture,
with its dedicated object classification and bounding box regression subnetworks, may
have an edge in precisely localizing objects when high overlap with the ground truth is
required. However, when the IoU threshold was relaxed to 0.5, the Faster R-CNN model
with the ResNet50 backbone (mFR50) surpassed all other models, attaining a mAP of
0.9428. This performance advantage indicates that the Faster R-CNN architecture, with
its region proposal network and region-of-interest pooling, might be better suited for
detecting objects with less stringent overlap requirements. Across both models, the smaller
ResNet50 backbone consistently demonstrated superior recall capabilities, outperforming
the larger ResNet101 and ResNeXt101 backbones. This trend was observed in the average
recall scores, where mR50 and mFR50 achieved 0.982 and 0.973, respectively, compared
to their larger counterparts. The lightweight ResNet50 architecture’s ability to maintain
high recall rates is particularly advantageous in applications where missing true positive
detections is undesirable, such as in seed classification tasks. F1 scores, which balance
precision and recall, followed a similar pattern, with the ResNet50-based models (mR50
and mFR50) outperforming their larger counterparts. This consistency across multiple
metrics highlights the effectiveness of the ResNet50 backbone in achieving a well-rounded
performance for the given task.

In terms of real-time inference speed in Figure 9, the larger backbones generally exhib-
ited slower performance compared to the ResNet50 models. The mFRX101 model achieved
the fastest inference speed of 57.1 ms per image (17.5 FPS), closely followed by mFR50 at
59.5 ms per image (16.8 FPS). However, the lightweight mR50 model demonstrated the
best balance between performance and speed, with an inference time of 62.1 ms per image
(16.1 FPS) while maintaining competitive accuracy and recall scores. When examining the
per-class detection performance, both models exhibited varying strengths and weaknesses
across different classes. The mR50 model demonstrated superior performance in detecting
challenging classes like ‘CP’ at both strict and lenient IoU thresholds. Conversely, the
mFR101 model excelled in classes like ‘HKRKU’, ‘HSSNTT1’, and ‘KKV’ at the stricter IoU
range. These observations highlight the importance of carefully evaluating model perfor-
mance on a per-class basis, as different architectures and backbones may excel at detecting
specific seed varieties or characteristics. Interestingly, the larger ResNeXt101 backbone
did not consistently outperform the ResNet architectures in either the RetinaNet or Faster
R-CNN models. While the mRX101 model achieved competitive results in some classes, its
overall performance was slightly lower than the ResNet models across most metrics. This
observation suggests that the increased complexity of the ResNeXt101 architecture may not
necessarily translate into improved performance for this specific task, and careful model
selection and tuning are crucial.

Table 8 provides a comprehensive overview of the performance metrics for both
RetinaNet and Faster R-CNN models across different backbone architectures, including
our previous work’s results. This comparison clearly demonstrates the advancements
made in our current study and underscores the value of our expanded methodology.
Our previous work, which utilized Faster R-CNN with a ResNet50 backbone, achieved
respectable results with a mAP@0.5:0.95 of 0.9408, an F1 score of 0.9566, and an inference
speed of 16.8 FPS. However, our current study has yielded significant improvements
across multiple metrics. The RetinaNet model with a ResNet101 backbone achieved the
highest mAP@0.5:0.95 of 0.9458, representing a 0.5 percentage point improvement over our
previous best. This enhancement in accuracy is crucial for precise cannabis seed detection
and classification. Furthermore, our best model in this study (RetinaNet with ResNet101)
achieved an impressive average recall of 0.985, compared to 0.973 in our previous work.
This 1.2 percentage point improvement indicates a substantial reduction in false negatives,
ensuring more comprehensive seed detection.
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Figure 9. mAP vs. inference speed for Faster R-CNN and RetinaNet model.

Table 8. Performance Comparison of RetinaNet and Faster R-CNN models.

Model Backbone mAP@0.5:0.95 mAP@0.5 Avg Recall F1 Score FPS

RetinaNet ResNet50 0.9449 0.9485 0.982 0.9631 16.1
RetinaNet ResNet101 0.9458 0.9481 0.985 0.9650 15.1
RetinaNet ResNeXt101 0.9426 0.9448 0.970 0.9561 14.5
Faster R-CNN (Previous Work) ResNet50 0.9408 0.9428 0.973 0.9566 16.8
Faster R-CNN ResNet101 0.9372 0.9418 0.967 0.9519 14.2
Faster R-CNN ResNeXt101 0.9352 0.9389 0.961 0.9479 17.5

The F1 score, which balances precision and recall, saw a notable improvement from
0.9566 to 0.9650 with our best-performing model. This 0.84 percentage point increase
demonstrates a well-rounded enhancement in overall detection performance. By expanding
our study to include RetinaNet, we have discovered that this one-stage detector consis-
tently outperforms Faster R-CNN in accuracy metrics for our specific task. This finding
provides valuable insights for future research and applications in cannabis seed detection.
Our evaluation of different backbones (ResNet50, ResNet101, and ResNeXt101) across
both architectures has revealed that, while ResNet101 generally offers the best accuracy,
ResNeXt101 can provide speed advantages, particularly with Faster R-CNN. While our
previous Faster R-CNN model maintained a competitive speed of 16.8 FPS, our current
study offers a range of options balancing speed and accuracy. For instance, Faster R-CNN
with ResNeXt101 achieves the highest speed of 17.5 FPS, while the RetinaNet models offer
superior accuracy with a slight trade-off in speed.

This research uniquely extends our previous findings by providing a comprehensive
comparison between one-stage (RetinaNet) and two-stage (Faster R-CNN) detectors for
cannabis seed detection, which was not explored in our earlier work. It offers insights into
the performance of different backbone architectures, allowing for more informed model
selection based on specific application requirements. We have demonstrated tangible
improvements in key metrics (mAP, recall, and F1 score) over our previous best results,
validating the effectiveness of our expanded methodology. Additionally, we have explored
the speed–accuracy trade-offs in greater depth, which is crucial for practical applications
in cannabis seed detection and classification. Therefore, this study not only builds upon
our previous work but significantly expands the scope of analysis in cannabis seed de-
tection. By achieving improved accuracy, recall, and F1 scores, while also providing a
range of models with different speed–accuracy balances, we have advanced the field of
automated cannabis seed classification. These findings offer valuable insights for both
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researchers and practitioners in agriculture technology, particularly in the rapidly evolving
cannabis industry.

7. Conclusions

This research significantly extends our previous work on cannabis seed detection
and classification, demonstrating the effective application of advanced deep learning
models, specifically Faster R-CNN and RetinaNet, across various backbone architectures.
Our expanded methodology has yielded notable improvements in detection accuracy
and efficiency, addressing critical needs in the rapidly evolving cannabis industry. Our
findings reveal that the RetinaNet model with the ResNet101 backbone achieved the highest
mean average precision (mAP) of 0.9458 at the IoU range of 0.5 to 0.95, surpassing both
our previous results (mAP of 0.9408) and the current Faster R-CNN implementations.
RetinaNet models consistently demonstrated superior performance across key metrics,
including recall and F1 score, indicating their effectiveness in minimizing missed detections
and balancing precision with recall. This study provides valuable insights into the trade-offs
between model architectures and backbones. While RetinaNet models excelled in accuracy,
Faster R-CNN, particularly with the ResNeXt101 backbone, offered advantages in inference
speed, achieving up to 17.5 FPS. This comprehensive evaluation enables more informed
model selection based on specific application requirements. A key limitation remains
the variability in seed quality and genetics, which can impact reproducibility. Future
work could explore ensemble techniques and transformer models for further performance
enhancements. Our improved method has vast potential applications, particularly in
cannabis agriculture, and it could extend to other agricultural sectors. Our enhanced
automated seed analysis can significantly improve productivity, consistency, and regulatory
adherence in cannabis seed classification. This study not only addressed a critical research
gap but also significantly advanced our previous findings in automating seed analysis. By
leveraging and comparing advanced deep learning models, we contribute to improving
efficiency and reliability in cannabis seed classification, providing a robust foundation for
future research and practical applications in agriculture.
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