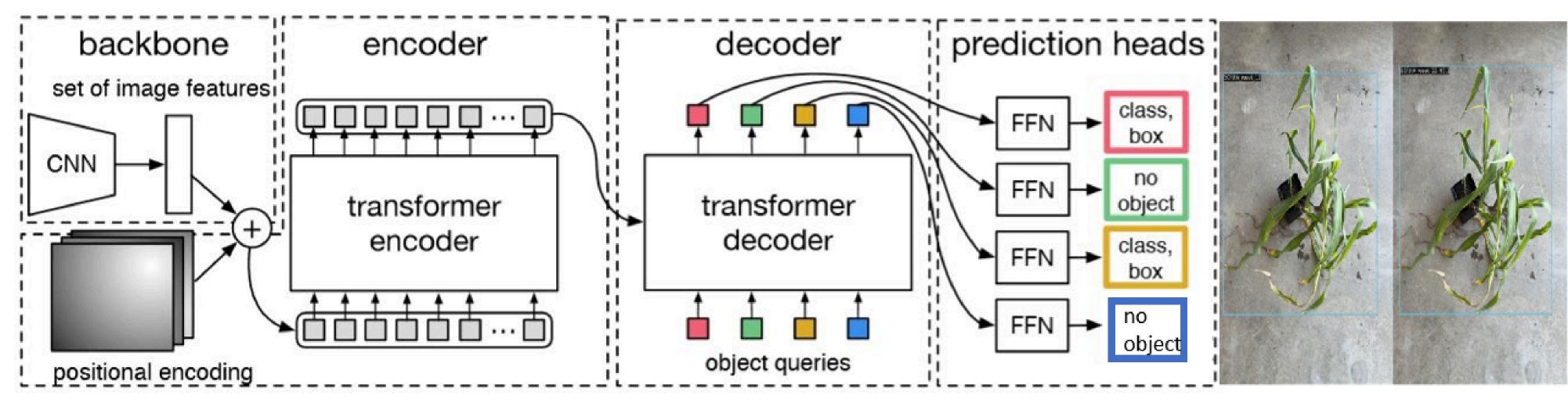


WeedVision: Multi-Stage Growth and Classification of Weeds using DETR and RetinaNet for Precision Agriculture Taminul Islam^a, Toqi Tahamid Sarker^a, Khaled R Ahmed^a, Cristiana Bernardi Rankrape^b, Karla Gage^b

Motivation -

- Enhance precision in detecting and classifying diverse weed species across various growth stages using AI.
- Reduce herbicide usage and environmental impact through accurate, automated, and species-specific weed management strategies.
- Mitigate agricultural yield losses by employing advanced object detection models for precise weed identification.



Contributions —

- Developed a comprehensive dataset of 203,567 images, covering 16 weed species across 11 growth stages.
- Labeling of the dataset, categorized by species and growth stage (week-wise), providing a comprehensive resource for weed identification research.
- Implemented and compared DETR and RetinaNet models for accurate weed detection and classification.

Detection Transformer (DETR) Architecture [1]. The model uses a CNN backbone, transformer encoder-decoder, and prediction heads to detect and classify objects, including weeds, as shown in the final output.

^a BASE Lab, School of Computing, Southern Illinois University, Carbondale, IL 62901, United States ^b School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, United States

Method

- Applied data augmentation techniques, including normalization, color space conversion, scaling, and thresholding, and labeled images with bounding boxes for accurate detection.
- To ensure data accuracy, we implemented a QA process, manually refining annotations using LabelImg software [2].
- Utilized RetinaNet with a ResNeXt-101 backbone and DETR with a ResNet-50 backbone for effective weed detection and classification.
- Trained models on an 80% training, 10% validation, and 10% testing split, evaluating performance through metrics like mAP, recall, and inference speed.


Jataset

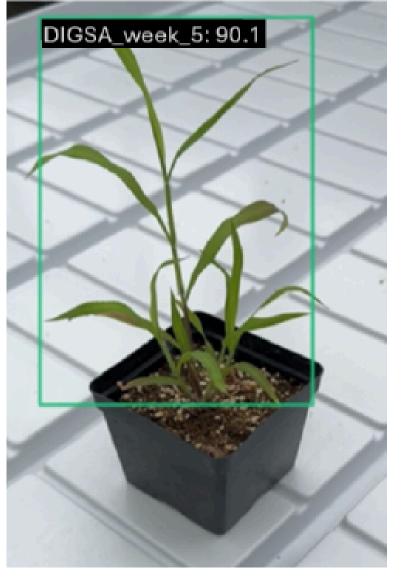
- With 16 species of weeds this research encompassed a total of 174 classes.
- The full dataset initially comprised 2,494,476 frames. After a thorough review process to remove substandard images, 203,567 images were ultimately selected for training.
- Images were captured under controlled greenhouse conditions to maintain consistency and reduce noise.
- Data includes diverse images from seedling to mature stages, ensuring robust training and evaluation, and captured with iPhone 15 Pro Max. Stopped capturing images when the weeds entered their flowering stages (week 11).

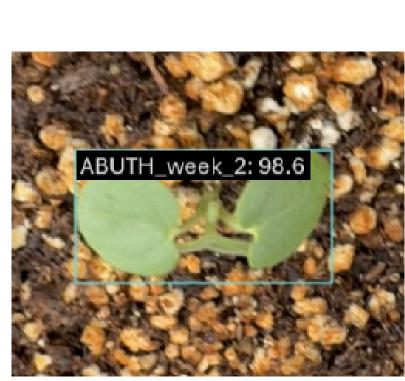
OVERVIEW OF WEED SPECIES OF ECONOMIC CONCERN, CORRESPONDING CODES, AND WEEKLY FRAME COUNTS CAPTURED FOR EACH SPECIES ACROSS 11 WEEKS IN THE GREENHOUSE

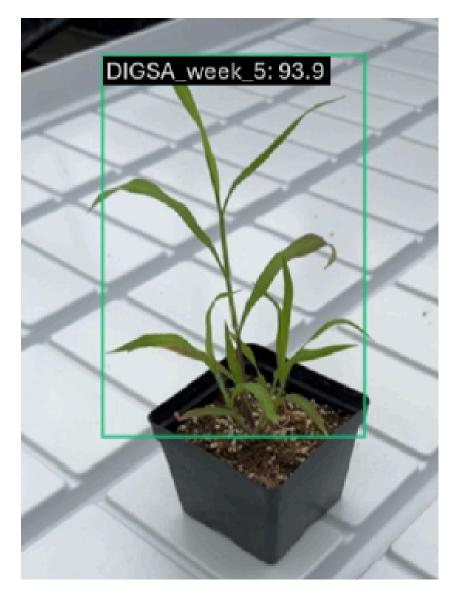
Species Code [20]	Scientific Name [21]	Common Name [22]	Family	Total 1	
ABUTH	Abutilon theophrasti Medik.	Velvetleaf	Malvaceae	14	
AMAPA	Amaranthus palmeri S. Watson.	Palmer Amaranth	Amaranthaceae	17	
AMARE	Amaranthus retroflexus L.	Redroot Pigweed	Amaranthaceae	15	
AMATU	Amaranthus tuberculatus (Moq.) Sauer.	Water Hemp	Amaranthaceae	14	
AMBEL	Ambrosia artemisiifolia L.	Common Ragweed	Asteraceae	17	
CHEAL	Chenopodium album L.	Common Lambsquarter	Chenopodiaceae	8	
CYPES	Cyperus esculentus L.	Yellow Nutsedge	Cyperaceae	14	
DIGSA	Digitaria sanguinalis (L.) Scop.	Large Crabgrass	Poaceae	16	
ECHCG	Echinochloa crus-galli (L.) P. Beauv.	Barnyard Grass	Poaceae	16	
ERICA	Erigeron canadensis L.	Horse Weed	Asteraceae	15	
PANDI	Panicum dichotomiflorum Michx.	Full Panicum	Poaceae	15	
SETFA	Setaria faberi Herrm.	Gaint Foxtail	Poaceae	14	
SETPU	Setaria pumila (Poir.) Roem.	Yellow Foxtail	Poaceae	15	
SIDSP	Sida spinosa L.	Princkly Sida	Malvaceae	14	
SORHA	Sorghum halepense (L.) Pers.	Johnson Grass	Poaceae	10	
SORVU	Sorghum bicolor (L.) Moench.	Shatter Cane	Poaceae	9	

• RetinaNet achieved the best mean Average Precision (mAP) of 0.904 and the mean Average Recall (mAR) of 0.989, outperforming DETR's mAP of 0.840

• In terms of inference speed, RetinaNet reached 7.28 FPS, significantly faster


PERFORMANCE COMPARISON OF DETR AND RETINANET ON TRAINING AND TEST SETS


Model	m	AP	mA	FPS	
	Train	Test	Train	Test	
DETR	0.854	0.840	0.941	0.936	3.49
RetinaNet	0.907	0.904	<mark>0.997</mark>	0.989	7.28


DF	ETR			Reti	naNet	
mAP_50	<i>mAP_</i> 75	Recall	mAP	mAP_50	<i>mAP_</i> 75	Recall
0.605	0.348	0.986	0.671	0.870	0.767	0.980
0.763	0.414	1.000	0.623	0.801	0.738	0.989
0.999	0.887	0.929	0.755	0.991	0.830	1.000
0.860	0.717	0.974	0.555	0.764	0.611	1.000
0.964	0.868	1.000	0.657	0.899	0.708	0.995
0.859	0.669	1.000	0.648	0.936	0.682	1.000
0.974	0.860	1.000	0.822	0.980	0.795	1.000
1.000	0.818	1.000	0.822	1.000	0.943	1.000
0.955	0.949	1.000	0.843	0.983	0.932	1.000
0.956	0.802	0.986	0.643	0.956	0.738	0.986
1.000	0.988	1.000	0.808	1.000	0.938	1.000

Class Name	DETR				RetinaNet			
Class Ivallie	mAP	mAP_50	<i>mAP_</i> 75	Recall	mAP	mAP_50	<i>mAP_</i> 75	Recal
ABUTH_Week_1	0.418	0.723	0.471	0.994	0.605	0.899	0.689	1.000
ABUTH_Week_2	0.576	0.988	0.530	1.000	0.829	0.990	0.952	1.00
ABUTH_Week_3	0.356	0.697	0.346	1.000	0.790	0.996	0.899	1.00
ABUTH_Week_4	0.408	0.771	0.396	0.996	0.725	0.973	0.844	0.99
ABUTH_Week_5	0.445	0.923	0.377	0.871	0.730	0.974	0.789	1.00
ABUTH_Week_6	0.850	1.000	1.000	0.886	0.924	0.970	0.970	0.97
ABUTH_Week_7	0.885	0.932	0.931	0.993	0.966	1.000	1.000	1.00
ABUTH_Week_8	0.856	1.000	0.982	1.000	0.911	1.000	1.000	1.00
ABUTH_Week_9	0.912	0.977	0.949	0.975	0.876	0.978	0.920	1.00
ABUTH_Week_10	0.880	0.967	0.923	1.000	0.868	0.971	0.893	1.00
ABUTH_Week_11	0.924	1.000	1.000	0.989	0.924	1.000	1.000	1.00

Comparison of object detection results for ABUTH and DIGSA using DETR and RetinaNet models. Row 1 displays predictions for ABUTH, and Row 2 displays predictions for DIGSA, with ground truth and model confidence scores indicated for each detection.

[1] Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable detr: Deformable

[2] L. Tzutalin, "Labelimg," https://github.com/tzutalin/labelImg, 2015, accessed: Oct 17, 2024

